

EAST GRAND RAPIDS PUBLIC SCHOOLS

Kent County, Michigan

REGULAR Meeting of the East Grand Rapids Board of Education

The Community Board Room at Woodcliff, 2915 Hall Street SE East Grand Rapids, MI 49506. For Information: Phone 616-235-3535.

Monday, March 18, 2019, 6:00 p.m.

AGENDA

- 1. Meeting Called to Order
- 2. Public Comments
- 3. Board Secretary's Report: Communications to and from the Board Beth Milanowski
- 4. Student Council President's Report Will Marsh

PRESENTATION / DISCUSSION

5. Middle School and High School Science Curriculum – Jenny Fee, MS/HS Teachers (Enclosure #5)

ACTION ITEMS - CONSENT AGENDA

Background:

In order to save time during the meeting, we are using a Consent Agenda. Items in the Consent Agenda include those that are considered routine or have been previously discussed by the Board of Education. Any Board Member may request to have any item removed for a separate discussion and vote.

Recommendation: Motion to approve items in the Consent Agenda Numbers 6 through 8.

- 6. Approval of Minutes of REGULAR Meeting of 02/25/2019 (Enclosure #6)
- 7. Approval of Payment of Bills February 2019 (Enclosure #7)
- 8. Approval of the High School Mathematics Curriculum (Enclosure #8)

OTHER ACTION ITEMS

9. Approval of Administrator Contract – Dr. Kattula (Enclosure #9)

ADMINISTRATIVE REPORTS

- 10. Superintendent
- 11. Assistant Supt. of Business
 - Budget Update Governor's Proposal
- 12. Assistant Supt. of Instruction

13. Board Member Reports

Communications Committee – Milanowski Facilities Committee – Hessler Finance Committee – Laackman Joint Facilities Committee – Bernecker Personnel Committee – Bernecker Policy Review Committee – Welch

Liaisons

Community Action Council – Yates
EGR Schools Foundation – Laackman
Legislative Liaison Committee – Welch
Parks & Recreation – Hessler
PTO Council – Bernecker
Parent Advocates for Special Education (PASE) – Reid
Leadership & Youth Development (LYD) – Milanowski
Superintendent's Advisory Council (SAC) – Milanowski

14. Adjournment

^{*} Minutes for this meeting will be available in the Superintendent's Office at 2915 Hall Street SE, East Grand Rapids, MI 49506.

^{**} If you plan to attend and have a special need and require accommodation to attend this meeting, please contact Dr. Heidi S. Kattula, Superintendent, at 616-235-3535.

BOARD ENCLOSURE March 18, 2019 Item No. 5

East Grand Rapids Public Schools

SECONDARY SCIENCE CURRICULUM

Grades 6-12

SCIENCE CURRICULUM COMMITTEE

Heather Carlson Jennifer Fee Matt Harold Lindsey Lantz Bill Trapp Kevin Vance Sarah Youngs

2018-2019 ADMINISTRATION

Heidi S. Kattula, Ed.D. Superintendent

Jennifer S. Fee Assistant Superintendent of Instruction

Kevin D. Philipps Assistant Superintendent of Business

2018-2019 BOARD OF EDUCATION

Natalie Bernecker President

Elizabeth Welch Vice-President

Beth Milanowski Secretary

Brad Laackman Treasurer

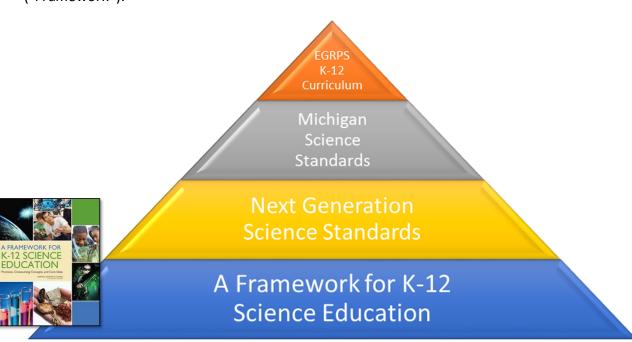
Mark Hessler Trustee

> Mike Reid Trustee

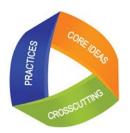
Janice Yates Trustee

TABLE OF CONTENTS

Overview Next Generation Science Standards & Michigan Science Standards	
Background	2
Curricular Approach	2
3D Science Learning	
Science Instruction	
Next Generation Science Standards At-a-Glance	
Michigan/NGSX Science Standards	
Scope & Sequence of Michigan K-12 Science Topics	
Michigan 6-8 Science Standards: Topics and Performance Expectations	
Michigan 9-12 Science Standards: Topics and Performance Expectations	
Michigan K-12 Learning Progressions	
Earth Science Progressions	
Life Science Progressions	
Physical Science Progressions	
Middle School 6-8 Science Curriculum by Topic	
Physical Science	
Life Science	_
Earth Science	
Engineering Design	
Middle School 6-8 Science Curriculum by Grade Level	
6th Grade	
7th Grade	
8th Grade	
High School 9-12 Science Curriculum by Topic	
Physical Science	
Life Science	
Earth Science	
Engineering Design	
High School 9-12 Science Curriculum by Course	
EGR High School Science Courses EGR High School Science Pathways	
Integrated Physics and Chemistry	
Physics and Physics Honors	
·	
ChemistryPre AP/IB Chemistry	
AP Chemistry	
IB Chemistry - Standard Level	
Biology and Biology Honors	
AP Biology	
IB Biology - Higher Level	
Advanced Projects in Physics and Engineering	
Anatomy and Physiology	
Environmental Science	
Forensics and Genetics	
. 5. 5. 5. 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6	, ,


OVERVIEW

NEXT GENERATION SCIENCE STANDARDS and MICHIGAN SCIENCE STANDARDS



BACKGROUND

The new Michigan Science Standards (MSS) are the performance expectations (PE) outlined in the Next Generation Science Standards, which in turn are based on guidance set forth by the National Research Council in their 2011 publication, A Framework for K-12 Science Education ("Framework").

The Michigan Science Standards, which replace the Grade Level Content Expectations and the High School Content Expectations in Science, identify the student performance outcomes in topics of science and engineering outlined in the "Framework." These are the standards on which the proposed East Grand Rapids Public Schools K-12 science curriculum was developed.

CURRICULAR APPROACH

The curriculum embraces the three-dimensions of science learning (3D learning) outlined in *A Framework for K-12 Science Education*. 3D learning refers to the thoughtful and deliberate integration of science and engineering practices, core ideas, and cross-disciplinary concepts. Through 3D learning, the Michigan Science Standards and the aligned EGRPS K-12 Science Curriculum emphasize that science is not just a series of isolated facts, but an interrelated world of inquiry and phenomena.

3D SCIENCE LEARNING

DIMENSION ONE:

Science and Engineering Practices "What students do"

Students need to be engaged in doing science by applying the same practices used by scientists and engineers.

Asking questions and defining problems
Developing and using models
Planning and carrying out investigations
Analyzing and interpreting data
Using mathematics and computational thinking
Constructing explanations and designing solutions
Engaging in argument from evidence

DIMENSION TWO:

Crosscutting Concepts (CCCs) "How students think"

Students need to see and think about the connections of core ideas to the bigger science concepts that cross disciplinary lines. Students use these overarching and enduring understandings as a means to connect the core ideas from various disciplines into a "cumulative, coherent, and usable understanding of science and engineering" (Framework, page. 83).

Patterns
Cause and Effect
Scale, Proportion, and Quantity
Systems and System Models
Energy and Matter in Systems
Structure and Function
Stability and Change of Systems

DIMENSION THREE:

Disciplinary Core Ideas (DCIs) "What students know"

Students should engage in science and engineering practices in the context of core ideas that become ever more sophisticated as students move through school. The curriculum is organized across four disciplines: Physical Science, Earth Science, Life Science, and Engineering, Technology, and Applications of Science.

Physical Science

Earth and Space Science

Life Science

Engineering, Technology, & Applications of Science

SCIENCE INSTRUCTION

3D learning sees science as an interrelated world of inquiry and phenomena. With this fact in mind, the curriculum presents coherent investigations or engineering problems, where questions and phenomena motivate building and using the disciplinary and crosscutting ideas. By basing the curriculum on questions and phenomena, the learning becomes inquiry-based and integrates the three-dimensions of learning: Science and Engineering Practices (What students do), Crosscutting Concepts (How students think), and Disciplinary Core Ideas (What students know).

This calls for a different approach to teaching science; an approach that engages students in the practices of science and engineering by doing science. Within the context of this curriculum, science instruction will look different.

Science instruction will involve less :	Science instruction will involve more :
Rote memorization of facts and terminology	Facts and terminology learned as needed while developing explanations and designing solutions supported by evidence-based arguments and reasoning
Learning of ideas disconnected from questions about phenomena	Systems thinking to explain phenomena, giving context for the ideas to be learned and modeled
Teachers providing information to the whole class	Students conducting investigations, solving problems, and engaging in discussions with teachers' facilitation
Teachers posing questions with only one right answer	Students discussing open-ended questions that focus on the strength of the evidence used to generate claims
Students reading textbooks and answering questions at the end of each chapter	Students reading multiple sources and developing summaries of information
Worksheets	Student learning reflected through journals, reports, posters, and media presentations that explain and argue

Source: national Research Council. (2015). Guide to Implementing the Next Generation Science Standards (pp. 8-9). Washington, DC: National Academies Press. http://www.nap.edu/cataog/18802/guide-to-implementin-th-next-generation-science-standards

NEXT GENERATION SCIENCE STANDARDS

DIMENSION 1: Science and Engineering Practices DIMENSION 2: Crosscutting Concepts (CCC) · Asking questions and defining problems Patterns • Cause and effect: Mechanism and explanation · Developing and using models • Planning and carrying out investigations · Scale, proportion, and quantity • Analyzing and interpreting data • Systems and system models • Using mathematics and computational thinking • Energy and matter: Flows, cycles, and conservation • Constructing explanations and designing solutions • Structure and function • Engaging in argument from evidence · Stability and change · Obtaining, evaluating, and communicating information **DIMENSION 3: Disciplines** Physical Life Earth and Engineering, Technology, and Applications of Science Science Science **Space Science CORE IDEAS CORE IDEAS CORE IDEAS CORE IDEAS** ETS1: Engineering design PS1: Matter and its interactions LS1: From molecules to ESS1: Earth's place in the universe PS2: Motion and stability: ESS2: Earth's systems ETS2: Links among engineering, organisms: Structures and Forces and interactions ESS3: Earth and human activity technology, science, processes PS3: Energy LS2: Ecosystems: Interactions, and society PS4: Waves and their energy, and dynamics applications in technologies LS3: Heredity: Inheritance and for information transfer variation of traits LS4: Biological evolution: Unity and diversity **SUB IDEAS SUB IDEAS SUB IDEAS SUB IDEAS PS1: Matter and its interactions** ESS1: Earth's Place in the Universe ETS1: Engineering Design LS1: From Molecules to Organisms: **PS1.A: Structures and Properties** Structures/Processes ESS1.A: The Universe and Its Stars ETS1.A: Defining and of Matter LS1.A: Structure and Function ESS1.B: Earth and the Solar System Delimiting an PS1.B: Chemical Reactions LS1.B: Growth and Development ESS1.C: The History of Planet Earth **Engineering Problem** ETS1.B: Developing Possible **PS1.C:** Nuclear Process of Organisms LS1.C: Organization for Matter ESS2: Earth's Systems Solutions PS2: Motion and Stability: Forcand Energy Flow in ESS2.A: Earth Materials and Systems ETS1.C: Optimizing the Design es and Interactions Organisms ESS2.B: Plate Tectonics and Large-Solution PS2.A: Forces and Motions LS1.D: Information Processing Scale System Interactions PS2.B: Types of Interactions ESS2.C: The Roles of Water in ETS2: Links Among PS2.C: Stability and Instability in LS2: Ecosystems: Interactions, Earth's Surface Processes Engineering, Technology, **Physical Systems Energy, and Dynamics** ESS2.D: Weather and Climate Science, and Society LS2.A: Interdependent ESS2.E: Biogeology ETS2.A: Interdependence of PS3: Energy Relationships in Ecosystems Science, Engineering, PS3.A: Definitions of Energy LS2.B: Cycles of Matter & Energy **ESS3: Earth and Human Activity** and Technology PS3.B: Conservation of Energy Transfer in Ecosystems ESS3.A: Natural Resources ETS2.B: Influence of and Energy Transfer LS2.C: Ecosystem Dynamics, ESS3.B: Natural Hazards Engineering, Technology, PS3.C: Relationship between Functioning, and Resilience ESS3.C: Human Impacts on Earth and Science on Society LS2.D: Social interactions and Systems and the Natural **Energy and Forces** PS3.D: Energy in Chemical **Group Behavior** ESS3.D: Global Climate Change World Processes and Everyday Life LS 3: Heredity: Inheritance and **PS4: Waves and Their Variation of Traits** Applications in Technologies for LS3.A: Inheritance of Traits **Information Transfer** LS3.B: Variation of Traits PS4.A: Wave Properties PS4.B: Electromagnetic LS 4: Biological Evolution: Unity Radiation and Diversity PS4.C: Information Technologies LS4.A: Evidence of Common and Instrumentation Ancestry and Diversity LS4.B: Natural Selection LS4.C: Adaptation LS4.D: Biodiversity and Humans

DISCIPLINARY CORE IDEAS (DCI): A list of what students should understand about EACH sub-idea at the end of grades 2, 5, 8, and 12.

PERFORMANCE EXPECTATIONS (PE): Statements of what students at each grade level should be able to do after instruction; Incorporate the three dimensions into its wording.

TOPICS/BUNDLES: A group of PEs clustered together.

MICHIGAN / NGSX SCIENCE STANDARDS

SCOPE AND SEQUENCE OF MICHIGAN K-12 SCIENCE TOPICS

	TOPICS	K	1	2	3	4	5	6-8	9-12
	Energy					٧		٧	٧
NCE	Structures & Properties of Matter			٧			٧	٧	٧
SCIE	Waves		٧			٧		٧	٧
PHYSICAL SCIENCE	Forces & Interactions	٧			٧			٧	٧
PHY	Waves and Electromagnetic Radiation							٧	٧
	Chemical Reactions							٧	٧
	Earth's Systems			٧		٧	٧	٧	٧
<u> </u>	Weather & Climate	٧		٧	٧			٧	٧
SCIEN	Space Systems		٧				٧	٧	٧
EARTH SCIENCE	History of the Earth							٧	٧
EA	Human Impacts							٧	
	Human Sustainability								٧
	Inheritance and Variation of Traits				٧				٧
	Interdependent Relationships in Ecosystems	٧		٧	٧			٧	٧
NCE	Matter and Energy in Organisms and Ecosystems						٧	٧	٧
LIFE SCIENCE	Structure, Function, and Information Processing		٧			٧		٧	٧
LIFE	Growth, Development, and Reproduction of Organisms							٧	
	Natural Selection and Adaptations							٧	
	Natural Selection and Evolution								٧
ETSA	Engineering & Design	٧	٧	٧	٧	٧	٧	٧	٧

ETSA: Engineering, Technology and Applications of Science

PHYSICAL SCIENCE

STRUCTURE AND PROPERTIES OF MATTER

MS-PS1-1

Develop models to describe the atomic composition of simple molecules and extended structures.

MS-PS1-3

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. **MS-PS1-4**

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

CHEMICAL REACTIONS

MS-PS1-2

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

MS-PS1-5

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

MS-PS1-6

Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.*

FORCES AND INTERACTIONS

MS-PS2-1

Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.*

MS-PS2-2

Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.

MS-PS2-3

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

MS-PS2-4

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

MS-PS2-5

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

ENERGY

MS-PS3-1

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

MS-PS3-2

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

MS-PS3-3

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. *

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

MS-PS3-5

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

PHYSICAL SCIENCE

WAVES AND ELECTROMAGNETIC RADIATION

MS-PS4-1

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

MS-PS4-2

Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

MS-PS4-3

Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

- * Integrates traditional science content with engineering.
 + Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment.
- Includes a Michigan specific performance expectation.

LIFE SCIENCE

STRUCTURE, FUNCTION, AND INFORMATION PROCESSING

MS-LS1-1

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

MS-LS1-2

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

MS-LS1-3

Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

MS-LS1-8

Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.

MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS

MS-LS1-6

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

MS-LS1-7

Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.

MS-IS2-1

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. +

MS-LS2-3

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. +

MS-LS2-4

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS

MS-LS2-2

Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. +

MS-LS2-5

Evaluate competing design solutions for maintaining biodiversity and ecosystem services. * +

GROWTH, DEVELOPMENT, AND REPRODUCTION OF ORGANISMS

MS-LS1-4

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

MS-LS1-5

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. +

MS-LS3-1

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

MS-LS3-2

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

MS-LS4-5

Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

LIFE SCIENCE

NATURAL SELECTION AND ADAPTATION

MS-LS4-1

Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. +

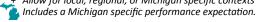
MS-LS4-2

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

MS-LS4-3

Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

MS-LS4-4


Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific environment.

MS-LS4-6

Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

KEY

- * Integrates traditional science content with engineering.
- + Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment.

EARTH SCIENCE

SPACE SYSTEMS

MS-ESS1-1

Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.

MS-ESS1-2

Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.

MS-ESS1-3

Analyze and interpret data to determine scale properties of objects in the solar system.

HISTORY OF EARTH

MS-ESS1-4

Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

MS-ESS2-2

Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.

MS-ESS2-3

Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

EARTH'S SYSTEMS

MS-ESS2-1

Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. +

MS-ESS2-4

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. +

MS-ESS3-1

Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. +

WEATHER AND CLIMATE

MS-ESS2-5

Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.

MS-ESS2-5 MI

Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions in Michigan due to the Great Lakes and regional geography.

MS-ESS2-6

Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

MS-ESS3-5

Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

EARTH SCIENCE

HUMAN IMPACTS

MS-ESS3-2

Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

MS-ESS3-3

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. * + **MS-ESS3-4**

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

KEY

* Integrates traditional science content with engineering.

+ Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment.
Includes a Michigan specific performance expectation.

ENGINEERING DESIGN

MS-ETS1-1

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-2

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS1-3

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-ETS1-4

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

PHYSICAL SCIENCE

STRUCTURE AND PROPERTIES OF MATTER

HS-PS1-1

Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.

HS-PS1-3

Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.

HS-PS1-8

Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.

HS-PS2-6

Communicate scientific and technical information about why the molecular level structure is important in the functioning of designed materials. *

CHEMICAL REACTIONS

HS-PS1-2

Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.

HS-PS1-4

Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.

HS-PS1-5

Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.

HS-PS1-6

Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.*

HS-PS1-7

Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.

FORCES AND INTERACTIONS

HS-PS2-1

Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

HS-PS2-2

Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

HS-PS2-3

Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.*

HS-PS2-4

Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.

HS-PS2-5

Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

PHYSICAL SCIENCE

ENERGY

HS-PS3-1

Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

HS-PS3-2

Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects).

HS-PS3-3

Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.*

HS-PS3-4

Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).

HS-PS3-5

Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

WAVES AND ELECTROMAGNETIC RADIATION

HS-PS4-1

Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.

HS-PS4-2

Evaluate questions about the advantages of using a digital transmission and storage of information.

HS-PS4-3

Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.

HS-PS4-4

Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.

HS-PS4-5

Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy. *

KEY

- * Integrates traditional science content with engineering.
- ± Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment.
- Includes a Michigan specific performance expectation.

LIFE SCIENCE

STRUCTURE AND FUNCTION

HS-LS1-1

Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.

HS_I \$1_2

Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.

HS-LS1-3

Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.

MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS

HS-LS1-5

Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.

HS-LS1-6

Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.

HS-LS1-7

Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.

HS-LS2-3

Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.

HS-LS2-4

Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. +

HS-LS2-5

Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. +

INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS

HS-LS2-1

Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.

HS-LS2-2

Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.

HS-LS2-6

Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. +

HS-LS2-7

Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.* +

HS-LS2-8

Evaluate the evidence for the role of group behavior on individual and species' chances to survive and reproduce.

HS-LS4-6

Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity. +

LIFE SCIENCE

INHERITANCE AND VARIATION OF TRAITS

HS-LS1-4

Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.

HS-LS3-1

Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.

HS-LS3-2

Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.

HS-LS3-3

Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.

NATURAL SELECTION AND EVOLUTION

HS-LS4-1

Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.

HS-LS4-2

Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.

HS-LS4-3

Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.

HS-LS4-4

Construct an explanation based on evidence for how natural selection leads to adaptation of populations.

HS-LS4-5

Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.

KEY

- * Integrates traditional science content with engineering.
- + Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment.
- 🍊 Includes a Michigan specific performance expectation.

EARTH SCIENCE

SPACE SYSTEMS

HS-ESS1-1

Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation.

HS-ESS1-2

Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.

HS-ESS1-3

Communicate scientific ideas about the way stars, over their life cycle, produce elements.

HS-ESS1-4

Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.

HISTORY OF EARTH

HS-ESS1-5

Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.

HS-ESS1-6

Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history.

HS-ESS2-1

Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.

EARTH'S SYSTEMS

HS-ESS2-2

Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.

HS-ESS2-3

Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection.

HS-ESS2-5

Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. +

HS-FSS2-6

Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

HS-ESS2-7

Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth.

WEATHER AND CLIMATE

HS-ESS2-4

Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

HS-ESS3-5

Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems. +

EARTH SCIENCE

HUMAN SUSTAINABILITY

HS-ESS3-1

Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.

HS-ESS3-2

Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. * +

HS-ESS3-3

Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity. +

HS-FSS3-4

Evaluate or refine a technological solution that reduces impacts of human activities on natural systems. *

HS-ESS3-6

Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

KEY

- * Integrates traditional science content with engineering.
- + Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment.

 Includes a Michigan specific performance expectation.

ENGINEERING DESIGN

HS-ETS1-1

Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

HS-ETS1-2

Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

HS-ETS1-3

Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

HS-ETS1-4

Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

MICHIGAN / NGSX SCIENCE STANDARDS:

NEXT GENERATION K-12 LEARNING PROGRESSIONS

Earth Science Progression Increasing Sophistication of Student Thinking

	K-2	3-5	6-8	9-12
ESS1.A The universe and its stars		Stars range greatly in size and distance from Earth and this can explain their relative brightness.		Light spectra from stars are used to determine their characteristics, processes, and lifecycles. Solar activity creates the elements through nuclear fusion. The development of technolo-
	Patterns of movement of the sun, moon, and stars as seen from Earth can be		The solar system is part of the Milky Way, which is one of many billions of galaxies.	gies has provided the astronomical data that provide the empirical evidence for the Big Bang theory.
ESS1.A The universe and its stars	observed, described, and predicted.	The Earth's orbit and rotation, and the orbit of the moon around the Earth cause observable patterns.	The solar system contains many varied objects held together by gravity. Solar system models explain and predict eclipses, lunar phases, and seasons.	Kepler's laws describe common features of the motions of orbiting objects. Observations from astronomy and space probes provide evidence for explanations of solar system formation. Changes in Earth's tilt and orbit cause climate changes such as Ice Ages.
ESS1.C The history of planet Earth	Some events on Earth occur very quickly; others can occur very slowly.	Certain features on Earth can be used to order events that have occurred in a landscape.	Rock strata and the fossil record can be used as evidence to organize the relative occurrence of major historical events in Earth's history.	The rock record resulting from tectonic and other geoscience processes as well as objects from the solar system can provide evidence of Earth's early history and the relative ages of major geologic formations.
ESS2.A Earth materials and systems	Wind and water change the shape of the land.	Four major Earth systems interact. Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, organisms, and gravity break rocks, soils, and sediments into smaller pieces and move them around.	Energy flows and matter cycles within and among Earth's systems, including the sun and Earth's interior as primary energy sources. Plate tectonics is one result of these processes.	Feedback effects exist within and among Earth systems.
ESS2.B Plate tectonics and large-scale system interactions	Maps show where things are located. One can map the shapes and kinds of land and water in any area.	Earth's physical features occur in patterns, as do earthquakes and volcanoes. Maps can be used to locate features and determine patterns in those events.	Plate tectonics is the unifying theory that explains movements of rocks at Earth's surface and geological history. Maps are used to display evidence of plate movement.	Radioactive decay within Earth's interior contributes to thermal convection in the mantle.

	K-2	3-5	6-8	9-12
ESS2.C The roles of water in Earth's surface processes	Water is found in many types of places and in different forms on Earth.	Most of Earth's water is in the ocean and much of the Earth's fresh water is in glaciers or underground.	Water cycles among land, ocean, and atmosphere, and is propelled by sunlight and gravity. Density variations of sea water drive interconnected ocean currents. Water movement causes	The planet's dynamics are greatly influenced by water's unique chemical and physical properties.
ESS2.D Weather and climate	Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region and time. People record weather patterns over time.	Climate describes patterns of typical weather conditions over different scales and variations. Historical weather patterns can be analyzed.	weathering and erosion, changing land- scape features. Complex interactions determine local weather patterns and influence climate, including the role of the ocean.	The role of radiation from the sun and its interactions with the atmosphere, ocean, and land are the foundation for the global climate system. Global climate models are used to predict future changes, including changes influenced by human behavior and natural factors.
ESS2.E Biogeology	Plants and animals can change their local environment. Living things need	Living things can affect the physical characteristics of their environment.	[Content found in LS4.A and LS4.D]	The biosphere and Earth's other systems have many interconnections that cause a continual co-evolution of Earth's surface and life on it
ESS3.A Natural resources	water, air, and resources from the land, and they live in places that have the things they need. Humans use natural resources for everything they do.	Energy and fuels humans use are derived from natural sources and their use affects the environment. Some resources are renewable over time, others are not.	Humans depend on Earth's land, ocean, atmosphere, and biosphere for different resources, many of which are limited or not renewable. Resources are distributed unevenly around the planet as a result of past geologic processes.	Resource availability has guided the development of human society and use of natural resources has associated costs, risks, and benefits.
ESS3.B Natural hazards	In a region, some kinds of severe weather are more likely than others. Forecasts allow communities to prepare for severe weather.	A variety of hazards result from natural processes; humans cannot eliminate hazards but can reduce their impacts.	Mapping the history of natural hazards in a region and understanding related geological forces.	Natural hazards and other geological events have shaped the course of human history at local, regional, and global scales.
ESS3.C Human impacts on Earth systems	Things people do can affect the environment but they can make choices to reduce their impacts.	Societal activities have had major effects on the land, ocean, atmosphere, and even outer space. Societal activities can also help protect Earth's resources and environments.	Human activities have altered the biosphere, sometimes damaging it, although changes to environments can have different impacts for different living things. Activities and technologies can be engineered to reduce people's impacts on Earth.	Sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources, including the development of technologies.
ESS3.D Global climate change	N/A	N/A	Human activities affect global warming. Decisions to reduce the impact of global warming depend on understanding climate science, engineering capabilities, and social dynamics.	Global climate models used to predict changes continue to be improved, although discoveries about the global climate system are ongoing and continually needed.

	K-2	3-5	6-8	9-12
LS1.A Structure and function	All organisms have external parts that they use to perform daily functions.	Organisms have both internal and external macroscopic structures that allow for growth, survival, behavior, and reproduction.	All living things are made up of cells. In organisms, cells work together to form tissues and organs that are specialized for particular body functions.	Systems of specialized cells within organisms help perform essential functions of life. Any one system in an organism is made up of numerous parts. Feedback mechanisms maintain an organism's internal conditions within certain limits and mediate behaviors.
LS1.B Growth and development of organisms	Parents and offspring often engage in behaviors that help the offspring survive.	Reproduction is essential to every kind of organism. Organisms have unique and diverse life cycles.	Animals engage in behaviors that increase the odds of reproduction. An organism's growth is affected by both genetic and environmental factors.	Growth and division of cells in organisms occurs by mitosis and differentiation for specific cell types.
LS1.C Organization for matter and energy flow in organisms	Animals obtain food they need from plants or other ani- mals. Plants need water and light.	Food provides animals with the materials and energy they need for body repair, growth, warmth, and motion. Plants acquire material for growth chiefly from air, water, and process matter and obtain energy from sunlight, which is used to maintain conditions necessary for survival.	Plants use the energy from light to make sugars through photosynthesis. Within individual organisms, food is broken down through a series of chemical reactions that rearrange molecules and release energy.	The hydrocarbon backbones of sugars produced through photosynthesis are used to make amino acids and other molecules that can be assembled into proteins or DNA. Through cellular respiration, matter and energy flow through different organizational levels of an organism as elements are recombined to form different products and transfer energy.
LS1.D Information Processing	Animals sense and communicate information and respond to inputs with behaviors that help them grow and survive	Different sense receptors are specialized for particular kinds of information; Animals use their perceptions and memories to guide their actions.	Each sense receptor responds to different inputs, transmitting them as signals that travel along nerve cells to the brain; The signals are then processed in the brain, resulting in immediate behavior or memories.	N/A

	K-2	3-5	6-8	9-12
LS2.A Interdependent relationships in ecosystems	Plants depend on water and light to grow, and also depend on animals for pollination or to move their seeds around.	The food of almost any animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants, while decomposers restore some materials back to the soil.	Organisms and populations are dependent on their environmental interactions both with other living things and with nonliving factors, any of which can limit their growth. Competitive, predatory, and mutually beneficial interactions vary across ecosystems but the patterns are shared.	Ecosystems have carrying capacities resulting from biotic and abiotic factors. The fundamental tension between resource availability and organism populations affects the abundance of species in any given ecosystem.
LS2.B Cycles of matter and energy transfer in ecosystems	[Content found in LS1.C and ESS3.A]	Matter cycles between the air and soil and among organisms as they live and die.	The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem. Food webs model how matter and energy are transferred among producers, consumers, and decomposers as the three groups interact within an ecosystem.	Photosynthesis and cellular respiration provide most of the energy for life processes. Only a fraction of matter consumed at the lower level of a food web is transferred up, resulting in fewer organisms at higher levels. At each link in an ecosystem elements are combined in different ways and matter and energy are conserved. Photosynthesis and cellular respiration are key components of the global carbon cycle.
LS2.C Ecosystem dynamics, functioning, and resilience	N/A	When the environment changes some organisms survive and repro- duce, some move to new locations, some move into the transformed environment, and some die.	Ecosystem characteristics vary over time. Disruptions to any part of an ecosystem can lead to shifts in all of its populations. The completeness or integrity of an ecosystem's biodiversity is often used as a measure of its health.	If a biological or physical disturbance to an ecosystem occurs, including one induced by human activity, the ecosystem may return to its more or less original state or become a very different ecosystem, depending on the complex set of interactions within the ecosystem.
LS2.D Social interactions and group behavior	N/A	Being part of a group helps animals obtain food, defend themselves, and cope with changes.	N/A	Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives.

	K-2	3-5	6-8	9-12
LS3.A Inheritance of traits	Young organisms are very much, but not	Different organisms vary in how	Genes chiefly regulate a specific protein, which affect an individual's traits.	DNA carries instructions for forming species' characteristics. Each cell in an organism has the same genetic content, but genes expressed by cells can differ
LS3.B Variation of traits	exactly, like their parents and also resemble other organisms of the same kind.	they look and function because they have different inherited information; the environment also affects the traits that an organism develops.	In sexual reproduction, each parent contributes half of the genes acquired by the offspring resulting in variation between parent and offspring. Genetic information can be altered because of mutations, which may result in beneficial, negative, or no change to proteins in or traits of an organism.	The variation and distribution of traits in a population depend on genetic and environmental factors. Genetic variation can result from mutations caused by environmental factors or errors in DNA replication, or from chromosomes swapping sections during meiosis.
LS4.A Evidence of common ancestry and diversity	N/A	Some living organisms resemble organisms that once lived on Earth. Fossils provide evidence about the types of organisms and environments that existed long ago.	The fossil record documents the existence, diversity, extinction, and change of many life forms and their environments through Earth's history. The fossil record and comparisons of anatomical similarities between organisms enables the inference of lines of evolutionary descent.	The ongoing branching that produces multiple lines of descent can be inferred by comparing DNA sequences, amino acid sequences, and anatomical and embryological evidence of different organisms.
LS4.B Natural selection	N/A	Differences in characteristics between individuals of the same species provide advantages in surviving and reproducing.	Both natural and artificial selection result from certain traits giving some individuals an advantage in surviving and reproducing, leading to predominance of certain traits in a population.	Natural selection occurs only if there is variation in the genes and traits between organisms in a population. Traits that positively affect survival can become more common in a population.
LS4.C Adaptation	N/A	Particular organisms can only survive in particular environments Populations of organisms live in a	Species can change over time in response to changes in environmental conditions through adaptation by natural selection acting over generations. Traits that support successful survival and reproduction in the new environment become more common.	Evolution results primarily from genetic variation of individuals in a species, competition for resources, and proliferation of organisms better able to survive and reproduce. Adaptation means that the distribution of traits in a population, as well as species expansion, emergence or extinction, can change when
LS4.D Biodiversity and humans	A range of different organisms lives in different places.	variety of habitats. Change in those habitats affects the organisms living there.	Changes in biodiversity can influence humans' resources and ecosystem services they rely on.	conditions change. Biodiversity is increased by formation of new species and reduced by extinction. Humans depend on biodiversity but also have adverse impacts on it. Sustaining biodiversity is essential to supporting life on Earth.

Physical Science Progression
Increasing Sophistication of Student Thinking

	K-2	3-5	6-8	9-12
PS1.A Structure of matter (includes PS1.C Nuclear processes)	Matter exists as different substances that have observable different properties. Different properties are suited to different purposes. Objects can be built up from smaller parts.	Matter exists as particles that are too small to see, and so matter is always conserved even if it seems to disappear. Measurements of a variety of observable properties can be used to identify particular materials.	The fact that matter is composed of atoms and molecules can be used to explain the properties of substances, diversity of materials, states of matter, phase changes, and conservation of matter.	The sub-atomic structural model and interactions between electric charges at the atomic scale can be used to explain the structure and interactions of matter, including chemical reactions and nuclear processes. Repeating patterns of the periodic table reflect patterns of outer electrons. A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy to take the molecule apart.
PS1.B Chemical reac- tions	Heating and cooling substances cause changes that are sometimes reversible and sometimes not.	Chemical reactions that occur when substances are mixed can be identified by the emergence of substances with different properties; the total mass remains the same.	Reacting substances rearrange to form different molecules, but the number of atoms is conserved. Some reactions release energy and others absorb energy.	Chemical processes are understood in terms of collisions of molecules, rearrangement of atoms, and changes in energy as determined by properties of elements involved.
PS2.A Forces and motion	Pushes and pulls can have different strengths	The effect of unbalanced forces on an object results in a change of motion. Patterns of motion can be used to predict future motion. Some forces act through contact, some forces act even when the objects are not in contact. The gravitational force of Earth acting on an object	The role of the mass of an object must be qualitatively accounted for in any change of motion due to the application of a force.	Newton's 2nd law (F=ma) and the conservation of momentum can be used to predict changes in the motion of macroscopic objects.
PS2.B Types of interactions	and directions, and can change the speed or di- rection of its motion or start or stop it.		Forces that act at a distance involve fields that can be mapped by their relative strength and effect on an object.	Forces at a distance are explained by fields that can transfer energy and can be described in terms of the arrangement and properties of the interacting objects and the distance between them. These forces can be used to describe the relationship between electrical and magnetic fields.
PS2.C Stability & instability in physical systems	N/A	N/A	N/A	N/A
PS3.A Definitions of energy	N/A	The faster the object moves, the nore energy it has. Energy can	Kinetic energy can be distinguished from the various forms of potential energy. Energy changes to and from each type can be tracked through physical or	The total energy within a system is conserved. Energy transfer within and between systems can be described and predicted in terms of energy associated with the motion
PS3.B Conservation of energy and energy transfer	[Content found in PS3.D]	moving objects, or through sound, light, or electrical currents. Energy can be converted from one form to another form.	chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter.	or configuration of particles (objects). Systems move toward stable states.

	K-2	3-5	6-8	9-12
PS3.C Relationship between energy and forces	Bigger pushes and pulls cause bigger changes in an object's motion or shape.	When objects collide, contact forces transfer energy so as to change the objects' motions.	When two objects interact, each one exerts a force on the other, and these forces can transfer energy between them.	Fields contain energy that depends on the arrangement of the objects in the field.
PS3.D Energy in chemical processes and everyday life	Sunlight warms Earth's surface.	Energy can be "produced," "used," or "released" by converting stored energy. Plants capture energy from sunlight, which can later be used as fuel or food.	Sunlight is captured by plants and used in a reaction to produce sugar molecules, which can be reversed by burning those molecules to release energy.	Photosynthesis is the primary biological means of capturing radiation from the sun; energy cannot be destroyed, it can be converted to less useful forms.
PS4.A Wave properties	Sound can make matter vibrate, and vibrating matter can make sound.	Waves are regular patterns of motion, which can be made in water by disturbing the surface. Waves of the same type can differ in amplitude and wavelength. Waves can make objects move.	A simple wave model has a repeating pattern with a specific wavelength, frequency, and amplitude, and mechanical waves need a medium through which they are transmitted. This model can explain many phenomena including sound and light. Waves can transmit energy.	The wavelength and frequency of a wave are related to one another by the speed of the wave, which depends on the type of wave and the medium through which it is passing. Waves can be used to transmit information and energy.
PS4.B Electromagnetic radiation	Objects can be seen only when light is available to illuminate them.	Object can be seen when light reflected from their surface enters our eyes.	The construct of a wave is used to model how light interacts with objects.	Both an electromagnetic wave model and a photon model explain features of electromagnetic radiation broadly and describe common applications of electromagnetic radiation.
PS4.C Information technologies and instrumentation	People use devices to send and receive information.	Patterns can encode, send, receive and decode information.	Waves can be used to transmit digital information. Digitized information is comprised of a pattern of 1s and 0s.	Large amounts of information can be stored and shipped around as a result of being digitized.

OVERVIEW

East Grand Rapids Public Schools

MIDDLE SCHOOL SCIENCE CURRICULUM by Topic

EGR MIDDLE SCHOOL SCIENCE CURRICULUM ALIGNED TO MICHIGAN STATE SCIENCE STANDARDS

PHYSICAL SCIENCE MICHIGAN STATE NGSS SCIENCE STANDARDS **GRADE LEVEL** CONTENT STRUCTURE AND PROPERTIES OF MATTER 6th 7th 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th MS-PS1-1 Develop models to describe the atomic composition of simple molecules and V Chemistry extended structures. MS-PS1-3 Gather and make sense of information to describe that synthetic materials come Chemistry Pollution from natural resources and impact society. MS-PS1-4 Develop a model that predicts and describes changes in particle motion, Chemistry temperature, and state of a pure substance when thermal energy is added or removed. **CHEMICAL REACTIONS** 6th 7th 8th Unit of Study - 7th Unit of Study - 6th Unit of Study - 8th MS-PS1-2 Analyze and interpret data on the properties of substances before and after the Chemistry substances interact to determine if a chemical reaction has occurred MS-PS1-5 Develop and use a model to describe how the total number of atoms does not Chemistry change in a chemical reaction and thus mass is conserved. MS-PS1-6 Undertake a design project to construct, test, and modify a device that either Chemistry releases or absorbs thermal energy by chemical processes. FORCES AND INTERACTIONS 6th 7th 8th Unit of Study - 7th Unit of Study - 8th Unit of Study - 6th MS-PS2-1 Apply Newton's Third Law to design a solution to a problem involving the motion ٧ Forces and Motion of two colliding objects.* MS-PS2-2 Plan an investigation to provide evidence that the change in an object's motion V depends on the sum of the forces on the object and the mass of the object. ects is conserved Forces and Motion when there is no net force on the system. MS-PS2-3 Ask questions about data to determine the factors that affect the strength of ٧ **Forces and Motion** electric and magnetic forces. MS-PS2-4 Construct and present arguments using evidence to support the claim that **Forces and Motion** gravitational interactions are attractive and depend on the masses of interacting objects. MS-PS2-5 Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the ٧ Forces and Motion objects are not in contact.

EGR MIDDLE SCHOOL SCIENCE CURRICULUM ALIGNED TO MICHIGAN STATE SCIENCE STANDARDS

PHYSICAL SCIENCE MICHIGAN STATE NGSS SCIENCE STANDARDS **GRADE LEVEL** CONTENT **ENERGY** 8th 6th 7th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of Forces and Motion Chemistry kinetic energy to the mass of an object and to the speed of an object. MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at V Chemistry Forces and Motion a distance changes, different amounts of potential energy are stored in the system. MS-PS3-3 Apply scientific principles to design, construct, and test a device that either Chemistry minimizes or maximizes thermal energy transfer. MS-PS3-4 Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy ٧ Chemistry of the particles as measured by the temperature of the sample. MS-PS3-5 Construct, use, and present arguments to support the claim that when the V V Chemistry Forces and Motion kinetic energy of an object changes, energy is transferred to or from the object. WAVES AND ELECTROMAGNETIC RADIATION 6th 7th 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th MS-PS4-1 Use mathematical representations to describe a simple model for waves that V Waves and Energy includes how the amplitude of a wave is related to the energy in a wave. MS-PS4-2 Develop and use a model to describe that waves are reflected, absorbed, ٧ Waves and Energy or transmitted through various materials. MS-PS4-3 Integrate qualitative scientific and technical information to support the claim ٧ that digitized signals are a more reliable way to encode and transmit information than analog Waves and Energy signals.

KEY

* Integrates traditional science content with engineering.

+ Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment.

Includes a Michigan specific performance expectation.

EGR MIDDLE SCHOOL SCIENCE CURRICULUM ALIGNED TO MICHIGAN STATE SCIENCE STANDARDS

LIFE SCIENCE MICHIGAN STATE NGSS SCIENCE STANDARDS GRADE LEVEL CONTENT STRUCTURE, FUNCTION, AND INFORMATION PROCESSING 8th 6th 7th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th MS-LS1-1 Conduct an investigation to provide evidence that living things are made of cells: ٧ Cells and Body Systems either one cell or many different numbers and types of cells. MS-LS1-2 Develop and use a model to describe the function of a cell as a whole and ways Cells and Body Systems parts of cells contribute to the function. MS-LS1-3 Use argument supported by evidence for how the body is a system of interacting Cells and Body Systems subsystems composed of groups of cells. MS-LS1-8 Gather and synthesize information that sensory receptors respond to stimuli by Cells and Body Systems sending messages to the brain for immediate behavior or storage as memories. MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS 6th 7th 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th MS-LS1-6 Construct a scientific explanation based on evidence for the role of ٧ Plants and Ecology photosynthesis in the cycling of matter and flow of energy into and out of organisms. MS-LS1-7 Develop a model to describe how food is rearranged through chemical reactions ٧ forming new molecules that support growth and/or release energy as this matter moves Plants and Ecology through an organism. **MS-LS2-1** Analyze and interpret data to provide evidence for the effects of resource Plants and Ecology availability on organisms and populations of organisms in an ecosystem. + MS-LS2-3 Develop a model to describe the cycling of matter and flow of energy among Plants and Ecology living and nonliving parts of an ecosystem. + MS-LS2-4 Construct an argument supported by empirical evidence that changes to ٧ Plants and Ecology physical or biological components of an ecosystem affect populations. INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS 6th 7th 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th MS-LS2-2 Construct an explanation that predicts patterns of interactions among organisms ٧ Plants and Ecology across multiple ecosystems. + MS-LS2-5 Evaluate competing design solutions for maintaining biodiversity and ecosystem ٧ Plants and Ecology services. * +

LIFE SCIENCE

MICHIGAN STATE NGSS SCIENCE STANDARDS **GRADE LEVEL** CONTENT **GROWTH, DEVELOPMENT, AND REPRODUCTION OF ORGANISMS** 8th 6th 7th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th MS-LS1-4 Use argument based on empirical evidence and scientific reasoning to support ٧ **Natural Selection** an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. MS-LS1-5 Construct a scientific explanation based on evidence for how environmental Natural Selection and genetic factors influence the growth of organisms. + MS-LS3-1 Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, ٧ Heredity beneficial, or neutral effects to the structure and function of the organism. MS-LS3-2 Develop and use a model to describe why asexual reproduction results in V offspring with identical genetic information and sexual reproduction results in offspring Heredity with genetic variation. MS-LS4-5 Gather and synthesize information about the technologies that have changed V Natural Selection the way humans influence the inheritance of desired traits in organisms. NATURAL SELECTION AND ADAPTATION 7th 8th 6th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th MS-LS4-1 Analyze and interpret data for patterns in the fossil record that document the V Geology existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. +

٧

٧

V

٧

Natural Selection

Natural Selection

Natural Selection

Natural Selection

KEY

infer evolutionary relationships.

in the fully formed anatomy.

ducing in a specific environment.

MS-LS4-2 Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to

MS-LS4-3 Analyze displays of pictorial data to compare patterns of similarities in the

embryological development across multiple species to identify relationships not evident

MS-LS4-4 Construct an explanation based on evidence that describes how genetic varia-

tions of traits in a population increase some individuals' probability of surviving and repro-

MS-LS4-6 Use mathematical representations to support explanations of how natural

selection may lead to increases and decreases of specific traits in populations over time.

Integrates traditional science content with engineering.

Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment. Includes a Michigan specific performance expectation.

EARTH SCIENCE MICHIGAN STATE NGSS SCIENCE STANDARDS GRADE LEVEL CONTENT **SPACE SYSTEMS** 6th 7th 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th MS-ESS1-1 Develop and use a model of the Earth-sun-moon system to describe the cyclic ٧ Astronomy patterns of lunar phases, eclipses of the sun and moon, and seasons. MS-ESS1-2 Develop and use a model to describe the role of gravity in the motions within Astronomy galaxies and the solar system. MS-ESS1-3 Analyze and interpret data to determine scale properties of objects in the solar V Astronomy Geology system. **HISTORY OF EARTH** 6th 7th 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th MS-ESS1-4 Construct a scientific explanation based on evidence from rock strata for how ٧ Geology the geologic time scale is used to organize Earth's 4.6-billion-year-old history. MS-ESS2-2 Construct an explanation based on evidence for how geoscience processes ٧ Geology have changed Earth's surface at varying time and spatial scales. MS-ESS2-3 Analyze and interpret data on the distribution of fossils and rocks, continental ٧ Geology shapes, and seafloor structures to provide evidence of the past plate motions. **EARTH'S SYSTEMS** 6th 7th 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th MS-ESS2-1 Develop a model to describe the cycling of Earth's materials and the flow of V Geology energy that drives this process. + MS-ESS2-4 Develop a model to describe the cycling of water through Earth's systems ٧ Pollution driven by energy from the sun and the force of gravity. + MS-ESS3-1 Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past ٧ ٧ Geology Pollution and current geoscience processes. +

EARTH SCIENCE MICHIGAN STATE NGSS SCIENCE STANDARDS GRADE LEVEL CONTENT **WEATHER AND CLIMATE** 6th 7th 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th MS-ESS2-5 Collect data to provide evidence for how the motions and complex interactions V Weather and Climate of air masses results in changes in weather conditions. MS-ESS2-5 MI Collect data to provide evidence for how the motions and complex ٧ Weather and Climate interactions of air masses results in changes in weather conditions in Michigan due to the Great Lakes and regional geography. MS-ESS2-6 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional V Weather and Climate MS-ESS3-5 Ask questions to clarify evidence of the factors that have caused the rise in Weather and Climate global temperatures over the past century. 6th 8th Unit of Study - 6th Unit of Study - 8th **HUMAN IMPACTS** 7th Unit of Study - 7th MS-ESS3-2 Analyze and interpret data on natural hazards to forecast future catastrophic ٧ Geology events and inform the development of technologies to mitigate their effects. MS-ESS3-3 Apply scientific principles to design a method for monitoring and minimizing ٧ Pollution Geology a human impact on the environment. * + **S-ESS3-4** Construct an argument supported by evidence for how increases in human ٧ Pollution Geology

KEY

- * Integrates traditional science content with engineering.
- + Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment.
 Includes a Michigan specific performance expectation.

population and per-capita consumption of natural resources impact Earth's systems.

ENGINEERING DESIGN

Integrated Across the Units of Study at Each Grade Level

MICHIGAN STATE NGSS SCIENCE STANDARDS		ADE LE	VEL	CONTENT			
MICHIGAN STATE NGSS SCIENCE STANDARDS	6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th	
MS-ETS1-1 Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.	٧	٧	٧	Engineering, Technology, and Applications of Science	Engineering, Technology, and Applications of Science	Engineering, Technology, and Applications of Science	
MS-ETS1-2 Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.	٧	٧	٧	Engineering, Technology, and Applications of Science	Engineering, Technology, and Applications of Science	Engineering, Technology, and Applications of Science	
MS-ETS1-3 Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.	٧	٧	٧	Engineering, Technology, and Applications of Science	Engineering, Technology, and Applications of Science	Engineering, Technology, and Applications of Science	
MS-ETS1-4 Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.	٧	٧	٧	Engineering, Technology, and Applications of Science	Engineering, Technology, and Applications of Science	Engineering, Technology, and Applications of Science	

East Grand Rapids Public Schools

MIDDLE SCHOOL SCIENCE CURRICULUM by Grade Level

SCIENCE STANDARDS 6th Grade

UNITS OF STUDY

Chemistry
Cells and Body Systems
Astronomy
Engineering, Technology, and Applications of Science

PHYSICAL SCIENCE - CHEMISTRY

STRUCTURE AND PROPERTIES OF MATTER

MS-PS1-1

Develop models to describe the atomic composition of simple molecules and extended structures.

MS-PS1-3

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. **MS-PS1-4**

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

CHEMICAL REACTIONS

MS-PS1-2

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

MS-PS1-5

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

MS-PS1-6

Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes. *

ENERGY

MS-PS3-1

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

MS-PS3-2

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

MS-PS3-3

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. * MS-PS3-4

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

MS-PS3-5

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

SCIENCE STANDARDS 6th Grade

LIFE SCIENCE - CELLS AND BODY SYSTEMS

STRUCTURE, FUNCTION, AND INFORMATION PROCESSING

MS-LS1-1

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

MS-LS1-2

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

MS-LS1-3

Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

MS-LS1-8

Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.

EARTH SCIENCE - ASTRONOMY

SPACE SYSTEMS - SOLAR SYSTEMS

MS-ESS1-1

Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.

MS-ESS1-2

Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.

MS-ESS1-3

Analyze and interpret data to determine scale properties of objects in the solar system.

ENGINEERING DESIGN: ENGINEERING, TECHNOLOGY, AND APPLICATIONS OF SCIENCE

MS_FTS1_1

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-2

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS1-3

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-ETS1-4

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

KFY

* Integrates traditional science content with engineering.

Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment.
 Includes a Michigan specific performance expectation.

SCIENCE STANDARDS 7th Grade

UNITS OF STUDY

Forces and Motion
Plants and Ecology
Natural Selection
Pollution

Engineering, Technology, and Applications of Science

PHYSICAL SCIENCE - FORCES AND MOTION

FORCES AND INTERACTIONS

MS-PS2-1

Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects. *

Plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object.

MS-PS2-3

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

MS-PS2-4

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

MS-PS2-5

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

ENERGY

MS-PS3-1

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

MS-PS3-2

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

MS-PS3-5

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

SCIENCE STANDARDS 7th Grade

LIFE SCIENCE - PLANTS AND ECOLOGY

MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS

MS-LS1-6

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

MS-LS1-7

Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.

MS-LS2-1

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. +

MS-LS2-3

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. + MS-LS2-4

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS

MS-LS2-2

Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. +

MS-LS2-5

Evaluate competing design solutions for maintaining biodiversity and ecosystem services. * +

LIFE SCIENCE - NATURAL SELECTION

GROWTH, DEVELOPMENT, AND REPRODUCTION OF ORGANISMS

MS-LS1-4

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

MS-LS1-5

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. +

MS-LS4-5

Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

NATURAL SELECTION AND ADAPTATION

MS-LS4-2

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

MS-LS4-3

Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

MS-LS4-4

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals' probability of surviving and reproducing in a specific environment.

MS-LS4-6

Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

SCIENCE STANDARDS 7th Grade

EARTH SCIENCE - POLLUTION

EARTH'S SYSTEMS

MS-ESS2-4

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. +

MS-ESS3-1

Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. +

STRUCTURES AND PROPERTIES OF MATTER

MS-PS1-3

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

HUMAN IMPACTS

MS-ESS3-3

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. * +

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

ENGINEERING DESIGN: ENGINEERING, TECHNOLOGY, AND APPLICATIONS OF SCIENCE

MS-ETS1-1

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-2

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS1-3

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-ETS1-4

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

KEY

- * Integrates traditional science content with engineering.
- ± Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment.
- Includes a Michigan specific performance expectation.

SCIENCE STANDARDS 8th Grade

UNITS OF STUDY

Waves and Energy
Heredity
Geology
Weather and Climate
Engineering, Technology, and Applications of Science

PHYSICAL SCIENCE - WAVES AND ENERGY

WAVES AND ELECTROMAGNETIC RADIATION

MS-PS4-1

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

MS-PS4-2

Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

MS-PS4-3

Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

LIFE SCIENCE - HEREDITY

GROWTH, DEVELOPMENT, AND REPRODUCTION OF ORGANISMS

MS-LS3-1

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

MS-LS3-2

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

EARTH SCIENCE - GEOLOGY

SPACE SYSTEMS

MS-ESS1-3

Analyze and interpret data to determine scale properties of objects in the solar system.

HISTORY OF EARTH

MS-ESS1-4

Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

MS-ESS2-2

Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.

MS-ESS2-3

Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

MS-LS4-1

Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past. + (Natural Selection and Adaptations)

SCIENCE STANDARDS 8th Grade

EARTH SCIENCE - GEOLOGY (cont.)

EARTH'S SYSTEMS

MS-ESS2-1

Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. + MS-ESS3-1

Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes. +

HUMAN IMPACTS

MS-ESS3-2

Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

EARTH SCIENCE - WEATHER AND CLIMATE

WEATHER AND CLIMATE

MS-ESS2-5

Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.

MS-ESS2-5 MI

Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions in Michigan due to the Great Lakes and regional geography.

MS-ESS2-6

Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

MS-ESS3-5

Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

ENGINEERING DESIGN: ENGINEERING, TECHNOLOGY, AND APPLICATIONS OF SCIENCE

MS-ETS1-1

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-2

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-FTS1-3

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-FTS1-4

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

KFY

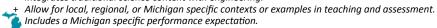
- * Integrates traditional science content with engineering.
- + Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment.
- Includes a Michigan specific performance expectation.

OVERVIEW

East Grand Rapids Public Schools

HIGH SCHOOL SCIENCE CURRICULUM by Topic

F	PHYSICAL SCIENCE							
MICHIGAN STATE NGSS SCIENCE STANDARDS	EGI	RHS (cou	RSE		UNIT O	F STUDY	
STRUCTURE AND PROPERTIES OF MATTER	IPC	РН	СН	ВІ	Integrated Physics & Chemistry	Physics	Chemistry	Biology
HS-PS1-1 Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.	٧	٧	٧		• Atomic Theory and Periodic Table of Elements • Electron Behavior • Bonding, Formulae, Nomenclature and Chemical Reactions	•Atomic Theory	Atomic Theory and Periodic Table of Elements Nuclear Chemistry and Electron Behavior Bonding, Formulae, Nomenclature and Chemical Reactions	
HS-PS1-3 Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.	٧		٧		Bonding, Formulae, Nomenclature and Chemical Reactions		Bonding, Formulae, Nomenclature and Chemical Reactions Intermolecular Forces and Gas Laws	
HS-PS1-8 Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.	٧	٧	٧		Electron Behavior Nuclear Chemistry	Nuclear Chemistry	Nuclear Chemistry and Electron Behavior	
HS-PS2-6 Communicate scientific and technical information about why the molecular level structure is important in the functioning of designed materials. *	٧		٧		Bonding, Formulae, Nomenclature and Chemical Reactions		Bonding, Formulae, Nomenclature and Chemical Reactions	
CHEMICAL REACTIONS	IPC	PH	СН	ВІ	Integrated Physics & Chemistry	Physics	Chemistry	Biology
HS-PS1-2 Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.	٧		٧		Bonding, Formulae, Nomenclature and Chemical Reactions		Bonding, Formulae, Nomenclature and Chemical Reactions Mole and Stoichiometry	
HS-PS1-4 Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.	٧		٧		Bonding, Formulae, Nomenclature and Chemical Reactions		• Energies	
HS-PS1-5 Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.			٧				•Chemical Equilibrium and Aqueous Chemistry	
HS-PS1-6 Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.*			٧				Chemical Equilibrium and Aqueous Chemistry	
HS-PS1-7 Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.	V		٧		Bonding, Formulae, Nomenclature and Chemical Reactions		Bonding, Formulae, Nomenclature and Chemical Reactions Mole and Stoichiometry Chemical Equilibrium and Aqueous Chemistry	


PHYSICAL SCIENCE MICHIGAN STATE NGSS SCIENCE STANDARDS **EGRHS COURSE UNIT OF STUDY Integrated Physics FORCES AND INTERACTIONS** IPC PH CH BI **Physics** Chemistry **Biology** & Chemistry **HS-PS2-1** Analyze data to support the claim that Newton's second law of ٧ ٧ motion describes the mathematical relationship among the net force on a Forces Forces macroscopic object, its mass, and its acceleration. **HS-PS2-2** Use mathematical representations to support the claim that the total Energy and momentum of a system of objects is conserved when there is no net force on the V Momentum Momentum system. **HS-PS2-3** Apply scientific and engineering ideas to design, evaluate, and refine Energy and ٧ Momentum a device that minimizes the force on a macroscopic object during a collision.* Momentum Measurement and Circular Motion **HS-PS2-4** Use mathematical representations of Newton's Law of Gravitation Motion Electricity and V ٧ and Coulomb's Law to describe and predict the gravitational and electrostatic Electricity and Magnetism Magnetism forces between objects. Astrophysics Astrophysics HS-PS2-5 Plan and conduct an investigation to provide evidence that an electric Electricity and Electricity and ٧ V current can produce a magnetic field and that a changing magnetic field can Magnetism Magnetism produce an electric current. **Integrated Physics ENERGY** IPC PH сн ві Chemistry **Physics** Biology & Chemistry **HS-PS3-1** Create a computational model to calculate the change in the energy Energy and ٧ ٧ ٧ Energetics of one component in a system when the change in energy of the other Energy Momentum component(s) and energy flows in and out of the system are known. **HS-PS3-2** Develop and use models to illustrate that energy at the macroscopic Intermolecular scale can be accounted for as a combination of energy associated with the Energy and ٧ V ٧ Energy Forces and Gas Laws motions of particles (objects) and energy associated with the relative position Momentum Energetics of particles (objects). HS-PS3-3 Design, build, and refine a device that works within given constraints Energy and V ٧ Energy Momentum to convert one form of energy into another form of energy.* **HS-PS3-4** Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are Meteorology and ٧ ٧ Geophysics Energetics combined within a closed system results in a more uniform energy distribution Thermal Physics among the components in the system (second law of thermodynamics). Electricity and **HS-PS3-5** Develop and use a model of two objects interacting through electric Atomic Theory and Magnetism Atomic Theory or magnetic fields to illustrate the forces between objects and the changes in ٧ ٧ ٧ Atomic Theory and Electricity and Periodic Table of energy of the objects due to the interaction. Magnetism Periodic Table of Elements Elements

PHYSICAL SCIENCE

MICHIGAN STATE NGSS SCIENCE STANDARDS	EG	EGRHS COURSE UNIT OF STUDY			GRHS COURSE			
WAVES AND ELECTROMAGNETIC RADIATION	IPC	РН	СН	ВІ	Integrated Physics & Chemistry	Physics	Chemistry	Biology
HS-PS4-1 Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.	٧	٧			•Waves	•Waves		
HS-PS4-2 Evaluate questions about the advantages of using a digital transmission and storage of information.	٧	٧			•Waves	• Waves		
HS-PS4-3 Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.	٧	٧			•Waves	•Waves		
HS-PS4-4 Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.		٧			• Waves	•Waves		
HS-PS4-5 Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy. *	٧	٧			•Waves	•Waves		

KEV

* Integrates traditional science content with engineering.

LIFE SCIENCE MICHIGAN STATE NGSS SCIENCE STANDARDS **EGRHS COURSE UNIT OF STUDY Integrated Physics** STRUCTURE AND FUNCTION IPC PH CH BI **Physics** Chemistry **Biology** & Chemistry **HS-LS1-1** Construct an explanation based on evidence for how the structure of ٧ • DNA/RNA DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells. **HS-LS1-2** Develop and use a model to illustrate the hierarchical organization of Characteristics of interacting systems that provide specific functions within multicellular organ-٧ Life Cells isms. **HS-LS1-3** Plan and conduct an investigation to provide evidence that feedback Photosynthesis/Cell ٧ Respiration mechanisms maintain homeostasis. **Integrated Physics** IPC PH СН **MATTER AND ENERGY IN ECOSYSTEMS** BI **Physics** Chemistry Biology & Chemistry **HS-LS1-5** Use a model to illustrate how photosynthesis transforms light energy Photosynthesis/Cell ٧ Respiration into stored chemical energy. **HS-LS1-6** Construct and revise an explanation based on evidence for how Chemistry of Life/ ٧ carbon, hydrogen, and oxygen from sugar molecules may combine with other Biochemistry elements to form amino acids and/or other large carbon-based molecules. **HS-LS1-7** Use a model to illustrate that cellular respiration is a chemical process Photosynthesis/Cell V whereby the bonds of food molecules and oxygen molecules are broken and the Respiration bonds in new compounds are formed resulting in a net transfer of energy. HS-LS2-3 Construct and revise an explanation based on evidence for the cycling Photosynthesis/Cell ٧ of matter and flow of energy in aerobic and anaerobic conditions. Respiration **HS-LS2-4** Use mathematical representations to support claims for the cycling ٧ Ecology of matter and flow of energy among organisms in an ecosystem. ** **HS-LS2-5** Develop a model to illustrate the role of photosynthesis and cellular Chemistry of Life/ respiration in the cycling of carbon among the biosphere, atmosphere, ٧ Biochemistry hydrosphere, and geosphere. **

LIFE SCIENCE MICHIGAN STATE NGSS SCIENCE STANDARDS **EGRHS COURSE UNIT OF STUDY Integrated Physics** INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS IPC PH CH BI **Physics** Chemistry **Biology** & Chemistry **HS-LS2-1** Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different ٧ Ecology scales. **HS-LS2-2** Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ٧ Ecology ecosystems of different scales. **HS-LS2-6** Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types V Ecology of organisms in stable conditions, but changing conditions may result in a new ecosystem. + HS-LS2-7 Design, evaluate, and refine a solution for reducing the impacts of V Ecology human activities on the environment and biodiversity. * + HS-LS2-8 Evaluate the evidence for the role of group behavior on individual and ٧ Evolution species' chances to survive and reproduce. **HS-LS4-6** Create or revise a simulation to test a solution to mitigate adverse ٧ Ecology impacts of human activity on biodiversity. + **Integrated Physics** IPC PH CH BI INHERITANCE AND VARIATION OF TRAITS **Physics** Chemistry Biology & Chemistry HS-LS1-4 Use a model to illustrate the role of cellular division (mitosis) and ٧ Cell Cycle differentiation in producing and maintaining complex organisms. **HS-LS3-1** Ask guestions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from V Evolution parents to offspring. **HS-LS3-2** Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, V Genetics (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors. **HS-LS3-3** Apply concepts of statistics and probability to explain the variation ٧ Genetics and distribution of expressed traits in a population.

LIFE SCIENCE

MICHIGAN STATE NGSS SCIENCE STANDARDS	EGRHS COURSE			RSE	UNIT OF STUDY			
NATURAL SELECTION AND EVOLUTION	IPC	РН	СН	ВІ	Integrated Physics & Chemistry	Physics	Chemistry	Biology
HS-LS4-1 Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.				٧				•Evolution
HS-LS4-2 Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.				٧				•Evolution
HS-LS4-3 Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.				٧				Evolution
HS-LS4-4 Construct an explanation based on evidence for how natural selection leads to adaptation of populations.				٧				• Evolution
HS-LS4-5 Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.				٧				•Evolution

- * Integrates traditional science content with engineering.

 + Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment.

 Includes a Michigan specific performance expectation.

EARTH SCIENCE									
MICHIGAN STATE NGSS SCIENCE STANDARDS	EG	RHS	cou	RSE		UNIT OF STUDY			
SPACE SYSTEMS	IPC	РН	СН	ВІ	Integrated Physics & Chemistry	Physics	Chemistry	Biology	
HS-ESS1-1 Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation.	٧	٧	٧		Astrophysics	Astrophysics	Nuclear Chemistry and Electron Behavior		
HS-ESS1-2 Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.	٧	٧			•Astrophysics	Astrophysics			
HS-ESS1-3 Communicate scientific ideas about the way stars, over their life cycle, produce elements.	٧	٧	٧		•Atomic Theory and Periodic Table of Elements •Astrophysics	Astrophysics	Atomic Theory and Periodic Table of Elements Nuclear Chemistry and Electron Behavior		
HS-ESS1-4 Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.	٧	٧			•Astrophysics	Circular MotionAstrophysics			
HISTORY OF EARTH	IPC	РН	СН	ВІ	Integrated Physics & Chemistry	Physics	Chemistry	Biology	
HS-ESS1-5 Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.	٧	٧			•Geophysics	Geophysics			
HS-ESS1-6 Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history.	٧	٧			•Astrophysics •Geophysics	• Astrophysics • Geophysics			
HS-ESS2-1 Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.	٧	٧			•Geophysics	Geophysics			
EARTH'S SYSTEMS	IPC	РН	СН	ВІ	Integrated Physics & Chemistry	Physics	Chemistry	Biology	
HS-ESS2-2 Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.			٧				•Environmental Chemistry		
HS-ESS2-3 Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection. HS-ESS2-5 Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. +	٧	٧			•Geophysics	Geophysics			
HS-ESS2-5 Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. +			٧				• Environmental Chemistry		
HS-ESS2-6 Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.				٧				•Ecology	
HS-ESS2-7 Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth.				٧				•Evolution	

EARTH SCIENCE MICHIGAN STATE NGSS SCIENCE STANDARDS **EGRHS COURSE UNIT OF STUDY Integrated Physics WEATHER AND CLIMATE** IPC PH сн ві **Physics** Chemistry **Biology** & Chemistry **HS-ESS2-4** Use a model to describe how variations in the flow of energy into Meteorology and V ٧ V Energetics Geophysics and out of Earth's systems result in changes in climate. Thermal Physics **HS-ESS3-5** Analyze geoscience data and the results from global climate models Meteorology and Environmental ٧ ٧ ٧ to make an evidence-based forecast of the current rate of global or regional Geophysics Thermal Physics Chemistry climate change and associated future impacts to Earth systems. + **Integrated Physics** IPC PH СН ВІ **HUMAN SUSTAINABILITY Physics** Chemistry **Biology** & Chemistry HS-ESS3-1 Construct an explanation based on evidence for how the availability ٧ ٧ of natural resources, occurrence of natural hazards, and changes in climate have Geophysics Geophysics influenced human activity. HS-ESS3-2 Evaluate competing design solutions for developing, managing, and V ٧ ٧ Nuclear Chemistry Nuclear Chemistry Energetics utilizing energy and mineral resources based on cost-benefit ratios. * + **HS-ESS3-3** Create a computational simulation to illustrate the relationships ٧ among management of natural resources, the sustainability of human Ecology populations, and biodiversity. + HS-ESS3-4 Evaluate or refine a technological solution that reduces impacts of V Nuclear Chemistry Nuclear Chemistry human activities on natural systems. * **HS-ESS3-6** Use a computational representation to illustrate the relationships Environmental among Earth systems and how those relationships are being modified due to ٧ Chemistry human activity.

KEY

+ Allow for local, regional, or Michigan specific contexts or examples in teaching and assessment.

^{*} Integrates traditional science content with engineering.

ENGINEERING DESIGN

Integrated Across the Units of Study at Each Grade Level

	EGRHS COURSE		RSE	E UNIT OF STUDY				
MICHIGAN STATE NGSS SCIENCE STANDARDS	IPC	PH	СН	ВІ	Integrated Physics & Chemistry	Physics	Chemistry	Biology
HS-ETS1-1 Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.	٧	٧	٧	٧	Engineering, Technology, and Applications of Science	 Engineering, Technology, and Application of Science 	 Engineering, Technology, and Applications of Science 	•Engineering, Technology, and Applications of Science
HS-ETS1-2 Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.	٧	٧	٧	٧	Engineering,Technology, andApplications ofScience	 Engineering, Technology, and Application of Science 	 Engineering, Technology, and Applications of Science 	•Engineering, Technology, and Applications of Science
HS-ETS1-3 Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.	٧	٧	٧	٧	•Engineering, Technology, and Applications of Science	 Engineering, Technology, and Application of Science 	 Engineering, Technology, and Applications of Science 	•Engineering, Technology, and Applications of Science
HS-ETS1-4 Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.	٧	٧	>	٧	 Engineering, Technology, and Applications of Science 	 Engineering, Technology, and Application of Science 	 Engineering, Technology, and Applications of Science 	•Engineering, Technology, and Applications of Science

East Grand Rapids Public Schools

HIGH SCHOOL SCIENCE CURRICULUM by COURSE

INTEGRAT AND CH	ED PHYSICS EMISTRY	РНҮ	SICS	CHEMISTRY IB CHE	AND PRE AP/ MISTRY	BIOLOGY BIOLOGY	GY AND HONORS
NGSS Standards	Unit Topic	NGSS Standards	Unit Topic	NGSS Standards	Unit Topic	NGSS Standards	Unit Topic
HS-PS2-4	Measurement and All Motion		Measurement	HS-PS1-1 HS-PS3-5 HS-ESS1-3	Atomic Theory & Periodic Table of Elements	HS-LS1-2	Introduction- Characteristics of Life
HS-PS2-1	Forces		Linear Motion	HS-ESS1-1 HS-ESS1-3 HS-PS1-1 HS-PS1-8	Nuclear Chemistry and Electron Behavior	HS-LS2-4 HS-LS2-1 HS-LS2-2 HS-LS2-6 HS-LS2-7 HS-LS4-6 HS-ESS2-6 HS-ESS3-3	Ecology
HS-PS2-2 HS-PS2-3 HS-PS3-1 HS-PS3-2 HS-PS3-3	Energy and Momentum	HS-PS2-1	Forces	HS-PS1-1 HS-PS1-2 HS-PS1-3 HS-PS2-6 HS-PS1-7	Bonding, Formulae, Nomenclature and Chemical Reactions	HS-LS1-6 HS-LS2-5	Chemistry of Life/ Biochemistry
HS-PS2-4 HS-PS2-5 HS-PS3-5	Electricity and Magnetism	HS-PS2-2 HS-PS2-3	Momentum	HS-PS1-2 HS-PS1-7	Moles and Stoichiometry	HS-LS1-2	Cells
HS-PS4-1 HS-PS4-2 HS-PS4-3 HS-PS4-4 HS-PS4-5	Waves	HS-PS3-1 HS-PS3-2 HS-PS3-3	Energy	HS-PS1-3 HS-PS3-2	Intermolecular Forces and Gas Laws	HS-LS1-4	Cell Cycle
HS-PS1-1 HS-PS3-5 HS-ESS1-3	Atomic Theory & Periodic Table of Elements	HS-ESS1-4 HS-PS2-4	Circular Motion	HS-PS1-5 HS-PS1-6 HS-PS1-7	Chemical Equilibrium and Aqueous Chemistry	HS-LS1-3 HS-LS1-5 HS-LS1-7 HS-LS2-3	Photosynthesis/ Cell Respiration
HS-PS1-1 HS-PS1-8	Electron Behavior	HS-PS1-1 HS-PS3-5 HS-ESS1-3	Atomic Theory	HS-PS3-1 HS-PS3-2 HS-PS3-4 HS-PS1-4 HS-ESS2-4 HS-ESS3-2	Energetics	HS-LS3-2 HS-LS3-3	Genetics
HS-PS1-1 HS-PS1-2 HS-PS1-3 HS-PS2-6 HS-PS1-7	Bonding, Formulae, Nomenclature and Chemical Reactions	HS-PS2-4 HS-PS2-5 HS-PS3-5	Electricity and Magnetism	HS-ESS2-2 HS-ESS2-5 HS-ESS3-5 HS-ESS3-6	Environmental Chemistry	HS-LS1-1 HS-LS3-1	DNA/RNA
HS-PS2-4 HS-ESS1-1 HS-ESS1-2 HS-ESS1-3 HS-ESS1-4 HS-ESS1-6	Astrophysics	HS-PS4-1 HS-PS4-2 HS-PS4-3 HS-PS4-4 HS-PS4-5	Waves				Virus-Bacteria
HS-ESS1-5 HS-ESS1-6 HS-ESS2-1 HS-ESS2-3 HS-ESS2-4 HS-ESS3-1 HS-ESS3-5 HS-PS3-4	Geophysics	HS-PS2-4 HS-ESS1-1 HS-ESS1-2 HS-ESS1-3 HS-ESS1-4 HS-ESS1-6	Astrophysics			HS-LS2-8 HS-LS4-1 HS-LS4-2 HS-LS4-3 HS-LS4-4 HS-LS-4-5 HS-ESS2-7	Evolution
HS-PS1-8 HS-ESS3-2 HS-ESS3-4	Nuclear Chemistry	HS-ESS1-5 HS-ESS1-6 HS-ESS2-1 HS-ESS2-3 HS-ESS3-1 HS-ESS2-4 HS-ESS3-5 HS-PS3-4	Geophysics Meteorology & Thermal Physics				
		HS-PS1-8 HS-ESS3-2 HS-ESS3-4	Nuclear Chemistry				

EGR HIGH SCHOOL SCIENCE COURSES

COURSE TITLE	DESCRIPTION	TEXTBOOK/SUPPORT MATERIALS
Integrated Physics and Chemistry	Integrated Physics and Chemistry is an introductory course to investigate the basic principles of physics and chemistry. This course is designed for students who need a less mathematical and more hands-on approach to the physical sciences.	Physics, Pearson/Prentice Hall and open source and online reading materials
Physics	Physics is an introductory course to the basic principles of Newtonian and modern physics in using Algebra.	Physics, Pearson/Prentice Hall
Physics Honors	This course covers the same principles and concepts as presented in Physics, but the pace and depth of mathematical analysis is much greater.	Physics: Principles and Problems, Glencoe
AP Physics	AP Physics C is a college level course that covers Newtonian physics including the use of Calculus.	Halliday and Resnick: Fundamentals of Physics 10th Edition
Biology	This beginning course uses a conceptual approach to explain key concepts in biology. There is an emphasis on cell biology, genetics, and the biochemistry of living things.	Glencoe Science Biology, National Geographic, Glencoe CK-12 Flexbook
Biology Honors	This course covers the same principles and concepts as presented in Biology, but the pace and depth of inquiry is much greater.	Glencoe Science Biology, National Geographic, Glencoe CK-12 Flexbook
AP Biology	AP Biology is an advanced level biology course. It is designed to be equivalent to a first year college biology course.	Open Stax AP Biology (online) Campbell and Reece 8th ed.
IB Biology HL (2 year)	IB (HL) Biology is a two-year course designed to provide students an in-depth study of the relationship of structure, function and interaction within and between all biological systems.	Pearson HL IB Biology Inthinking.net
Chemistry	This is an introductory course in theories and concepts of modern chemistry.	Open source and online reading materials only
Pre-AP/IB Chemistry	The Pre-AP/IB Chemistry class is faster paced and more rigorous compared to the previous honors class in order to better prepare students for college level courses such as AP Chemistry and IB Chemistry SL	Open source and online reading materials only
IB Chemistry SL	The IB chemistry (SL) course combines academic study with the acquisition of practical and investigational skills through the experimental approach. Students examine the chemical principles that form the basis of physical and biological systems through the core content and develop their skills designing experiments, analyzing data, and drawing conclusions from experimental data.	IB In Thinking, IB Questionbank, Specific Probeware, IB Chemistry SL Textbook
AP Chemistry	AP Chemistry is the equivalent to a college course usually taken by chemistry majors during their first year of college.	Chemistry by Raymond Chang, McGraw-Hill, 11th edition, 2014
Adv. Projects in Physics and Engineering	Basic physics concepts looked at from an advanced engineering level.	Open source and online reading materials only
Environmental Science	This course explores the many aspects of the environment and our influence on our environment through multiple scientific disciplines and perspectives.	Open source and online reading materials only
Anatomy and Physiology	This course focuses on the structures of the human body, what/where they are, how they function, came to be, and compare to other organisms	Essentials of Anatomy & Physiology, Pearson/ Prentice Hall; Open Source & Online Reading Materials
Forensics and Genetics	In this course students will investigate aspects of forensic science involving the inspection of physical, chemical, and biological items of evidence.	Forensic Science for High School (Kendall/ Hunt); Open Source & Online Reading Materials

EGR HIGH SCHOOL SCIENCE PATHWAYS

	9 th	10 th	11 th	12 th
Path for students enrolled in Algebra in 9th grade	Integrated Physics and Chemistry (IPC)	Chemistry	Biology	Science Elective
Path for students enrolled in a math course beyond Algebra in the 9th grade	Physics Physics Honors	Chemistry Pre-AP/IB Chemistry Honors	Biology Biology Honors AP Biology	Science Elective
Path for students who enroll in the	Physics Physics Honors	Chemistry Pre-AP/IB Chemistry Honors	IB Chemistry SL	Biology Biology Honors AP Biology
IB Diploma Programme	Physics Physics Honors	Chemistry Pre-AP/IB Chemistry Honors	IB Biology HL A	IB Biology HL B

GRADUATION REQUIREMENTS FOR SCIENCE

1.0 credit in Biology

1.0 credits in Physics or Chemistry

1.0 credit in any Science

3.0 Total Science Credits Required

SCIENCE ELECTIVES

Advance Projects in Engineering Anatomy and Physiology Forensics and Genetics Environmental Science AP Biology AP Chemistry AP Physics

IB Chemistry SL

INTEGRATED PHYSICS AND CHEMISTRY

UNIT TOPIC	UNIT DESCRIPTION	ENGINEERING AND LABS	MSS/NGSS STANDARDS
Measurement and All Motion	This unit discusses basic issues in measurement, including the metric system and uncertainty. It introduces and refines types of motion including linear and circular motions. It refines concepts of velocity and acceleration.	Length measurement methods and associated tools (paces, tape measure, meter stick, ruler, caliper, micrometer, laser/sonic devices) Motion Sensor Lab Centripetal Force Lab	HS-PS2-4
Forces	Basic introduction to Newton's laws and applications. Includes calculations of weight and discussion of inertial reference frames.	3 rd Law balloon rockets	HS-PS2-1
Energy and Momentum	This unit introduces the conservation of linear momentum and the impulse momentum theorem. Applications include collisions.	Car Crash Project HS-PS-2-3 (could do egg drop challenge i.e. build an egg catcher Windmill/Rubber band Car/ Machine Project)	HS-PS2-2 HS-PS2-3 HS-PS3-1 HS-PS3-2 HS-PS3-3
Electricity and Magnetism	Introduction to topics in electricity and magnetism including; static electricity, electrical magnetic force, electric current, voltage, and resistance. Analysis of electric circuits and devices will include Ohm's Law calculations. This study will include analysis of electrical technology that utilize electrify and magnetic forces.	Electronic Circuits Design Kits End of Unit Project Build a Simple Motor Lab	HS-PS2-4 HS-PS2-5 HS-PS3-5
Waves	Mathematical representations of frequency, wavelength and wave speed. Transfer and storage of information. Interactions between waves and matter. EM radiation and wave particle duality.	Dangers of Radiation Project	HS-PS4-1 HS-PS4-2 HS-PS4-3 HS-PS4-4 HS-PS4-5
Atomic Theory & Periodic Table of Elements	In this unit, students investigate the atom, beginning with the development of atomic theory. They learn about charges, the effects of these charges, and properties of elements. These properties are related to the Periodic Table of Elements and students use the Periodic Table to make predictions about the properties of elements based on location on the periodic table.	Modeling matter lab box prediction, Bean bag isotope lab, Matter lab	HS-PS1-1 HS-PS3-5 HS-ESS1-3
Electron Behavior	Students will predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. Students will explore periodic trends.	Flame test lab, periodic trends lab, Colorimetry lab	HS-PS1-1 HS-PS1-8
Bonding, Formulae, Nomenclature and Chemical Reactions	In this unit, students investigate the different ways atoms bond with other atoms. This includes the study of ionic and molecular compounds along with metallic and covalent network structures. Students will mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.	Types of Reaction Lab	HS-PS1-1 HS-PS1-2 HS-PS1-3 HS-PS2-6 HS-PS1-7
Astrophysics	Topics include cosmology and the life cycle of stars. Examples include the big bang, light spectra, distant galaxies, composition of objects in the universe.	Space research project exoplanets	HS-PS2-4 HS-ESS1-1 HS-ESS1-2 HS-ESS1-3 HS-ESS1-4 HS-ESS1-6
Geophysics	Introduction to topics in physical geology. Internal and surface processes, thermal convection of matter, carbon cycling and effects, water and its geological effects. Climate and weather, convection, heat transfer, 2 nd law of thermodynamics, greenhouse effect.	Thermal Lab/Solar Earth Cooker Newton's Law of Cooling	HS-ESS1-5 HS-ESS1-6 HS-ESS2-1 HS-ESS2-3 HS-ESS2-4 HS-ESS3-1 HS-ESS3-5 HS-PS3-4
Nuclear Chemistry	In this unit, students look closely at the nucleus, the different ways it can change, and the results of those changes. This understanding is then applied to natural phenomena like radioactive dating and the composition of stars.	Skittle half-life simulation lab Energy Project	HS-PS1-8 HS-ESS3-2 HS-ESS3-4

PHYSICS AND PHYSICS HONORS

UNIT TOPIC	UNIT DESCRIPTION	ENGINEERING AND LABS	MSS/NGSS STANDARDS
Measurement	This unit discusses basic issues in measurement, including the metric system and uncertainty.	Length measurement methods and associated tools (paces, tape measure, meter stick, ruler, caliper, micrometer, laser/sonic devices)	
Linear Motion	Introduction to kinematics. Measuring, computing and interpreting accelerations, velocity and displacement. Emphasis on problem solving and introducing the skills to apply mathematical descriptions to real world situations.	Motion Sensor Lab	
Forces	Basic introduction to Newton's laws and applications. Includes calculations of weight and discussion of inertial reference frames. Vector applications for Honors Physics.	Second Law with Air track 3rd Law balloon rockets	HS-PS2-1
Momentum	This unit introduces the conservation of linear momentum and the impulse momentum theorem. Applications include collisions.	Car Crash Project HS-PS-2-3 (Could do egg drop challenge i.e. build an egg catcher)	HS-PS2-2 HS-PS2-3
Energy	Conservation of Energy, power and work energy theorems.	Windmill/Rubber band Car/ Machine Project HS-PS3-3	HS-PS3-1 HS-PS3-2 HS-PS3-3
Circular Motion	This unit introduces centripetal acceleration and forces, universal gravitation and Kepler's laws and satellite motion.	Centripetal Force Lab Kepler's 3 Laws Modeling Lab	HS-ESS1-4 HS-PS2-4
Atomic Theory	In this unit, students investigate the atom, beginning with the development of atomic theory. They learn about charges, the effects of these charges, and properties of elements. These properties are related to the Periodic Table of Elements and students use the Periodic Table to make predictions about the properties of elements based on location on the periodic table.	Modeling matter lab box prediction, Bean bag isotope lab, Matter lab	HS-PS1-1 HS-PS3-5 HS-ESS1-3
Electricity and Magnetism	Introduction to topics in electricity and magnetism including; static electricity, electrical magnetic force, electric current, voltage, and resistance. Analysis of electric circuits and devices will include Ohm's Law calculations. This study will include analysis of electrical technology that utilize electrify and magnetic forces.	End of unit project Build a Simple Motor Lab	HS-PS2-4 HS-PS2-5 HS-PS3-5
Waves	Mathematical representations of frequency, wavelength and wave speed. Transfer and storage of information. Interactions between waves and matter. EM radiation and wave particle duality.	Dangers of Radiation Project	HS-PS4-1 HS-PS4-2 HS-PS4-3 HS-PS4-4 HS-PS4-5
Astrophysics	Topics include cosmology and the life cycle of stars. Examples include the big bang, light spectra, distant galaxies, composition of objects in the universe.	Space research project exoplanets	HS-PS2-4 HS-ESS1-1 HS-ESS1-2 HS-ESS1-3 HS-ESS1-4 HS-ESS1-6
Geophysics	Introduction to topics in physical geology. Internal and surface processes, thermal convection of matter, carbon cycling and effects, water and its geological effects.	Thermal Lab/Solar Earth Cooker	HS-ESS1-5 HS-ESS1-6 HS-ESS2-1 HS-ESS2-3 HS-ESS3-1
Meteorology & Thermal Physics	Climate and weather, convection, heat transfer, 2 nd law of thermodynamics, greenhouse effect.	Newton's Law of Cooling HS-PS3-4	HS-ES2-4 HS-ESS3-5 HS-PS3-4
Nuclear Chemistry	In this unit, students look closely at the nucleus, the different ways it can change, and the results of those changes. This understanding is then applied to natural phenomena like radioactive dating and the composition of stars.	Skittle half-life simulation lab Energy Project	HS-PS1-8 HS-ESS3-2 HS-ESS3-4

AP® PHYSICS C: MECHANICS

About the Advanced Placement Program® (AP®)

The Advanced Placement Program® has enabled millions of students to take college-level courses and earn college credit, advanced placement, or both, while still in high school. AP® Exams are given each year in May. Students who earn a qualifying score on an AP Exam are typically eligible to receive college credit and/or placement into advanced courses in college. Every aspect of AP course and exam development is the result of collaboration between AP teachers and college faculty. They work together to develop AP courses and exams, set scoring standards, and score the exams. College faculty review every AP teacher's course syllabus.

AP Physics Program

The AP Program offers four physics courses.

AP Physics 1 is a full-year course that is the equivalent of a first-semester introduction college course in algebra-based physics.

AP Physics 2 is a full-year course, equivalent to a second-semester introductory college course in physics. The course covers fluid mechanics; thermodynamics; electricity and magnetism; optics; and quantum, atomics, and nuclear physics.

AP Physics C: Mechanics is a half-year course equivalent to a semester-long, introductory calculus-based college course. It covers kinematics; Newton's laws of motion; work, energy, and power; systems of particles and linear momentum; circular motion and rotation; and oscillations and gravitation.

AP Physics C: Electricity and Magnetism, a half-year course following Physics C: Mechanics, is equivalent to a semester-long, introductory calculus-based college course and covers electrostatics; conductors, capacitors, and dielectrics; electric circuits; magnetic fields; and electromagnetism.

AP Physics C: Mechanics Course Overview

AP Physics C: Mechanics is equivalent to a one-semester, calculus-based, college-level physics course, especially appropriate for students planning to specialize or major in physical science or engineering. The course explores topics such as kinematics; Newton's laws of motion; work, energy and power; systems of particles and linear momentum; circular motion and rotation; and oscillations and gravitation. Introductory differential and integral calculus is used throughout the course.

LABORATORY REQUIREMENT

AP Physics C: Mechanics should include a hands-on laboratory component comparable to a semester-long introductory college-level physics laboratory. Students should spend a minimum of 20 percent of instructional time engaged in hands-on laboratory work. Students ask questions, make observations and predictions, design experiments, analyze data, and construct arguments in a collaborative setting, where they direct and monitor their progress. Each student should complete a lab notebook or portfolio of lab reports.

PREREQUISITE

Students should have taken or be concurrently taking calculus.

AP Physics C: Mechanics Course Content

The AP Physics C: Mechanics course applies both differential and integral calculus and provides instruction in each of the following six content areas:

- Kinematics
- · Newton's laws of motion
- · Work, energy and power
- · Systems of particles and linear momentum
- · Circular motion and rotation
- · Oscillations and gravitation

Learning Objectives for Laboratory and Experimental Situations

Students establish lines of evidence and use them to develop and refine testable explanations and predictions of natural phenomena. Focusing on these disciplinary practices and experimental skills enables teachers to use the principles of scientific inquiry to promote a more engaging and rigorous experience for AP Physics C: Mechanics students. Such practices or skills require students to

- · Design experiments
- · Observe and measure real phenomena
- Organize, display, and critically analyze data
- Analyze sources of error and determine uncertainties in measurement
- · Draw inferences from observations and data
- Communicate results, including suggested ways to improve experiments and proposed questions for further study

A minimum of 20 percent of instructional time is devoted to handson and inquiry-based laboratory investigations.

AP® PHYSICS C: MECHANICS

AP Physics C: Mechanics Exam Structure

AP PHYSICS C: MECHANICS EXAM: 1 HOUR, 30 MINUTES

Assessment Overview

The AP Physics C: Mechanics Exam includes questions posed in a laboratory or experimental setting. Questions assess understanding of content as well as experimental skills. The exam may also include questions that overlap several major topical areas or questions on miscellaneous topics such as identification of vectors and scalars, vector mathematics, or graphs of functions.

Students will be allowed to use a four-function, scientific, or graphing calculator on the entire AP Physics C: Mechanics and AP Physics C: Electricity and Magnetism Exams. Scientific or graphing calculators (including the approved graphing calculators listed at www.collegeboard.org/ap/calculators) cannot have any unapproved features or capabilities.

Format of Assessment

Section I: Multiple Choice | 35 Questions | 45 Minutes | 50% of Exam Score

- Individual Questions
- Questions in Sets

Section II: Free Response | 3 Questions | 45 Minutes | 50% of Exam Score

- Laboratory Based
- Discrete Questions

AP PHYSICS C: MECHANICS SAMPLE EXAM QUESTIONS

Sample Multiple-Choice Question

- (a) <u>Μυ</u>
- (b) $\frac{(M+m)v}{m}$
- (c) <u>(M m) υ</u>
- (d) <u>mv</u>
- (e) <u>mv</u> (M - m)

Correct Answer: B

Sample Free-Response Question

(a) On the figure below, draw and label the forces (not components) acting on the ball at their points of application as it rolls along the roof.

- (b) Calculate the force due to friction acting on the ball as it rolls along the roof. If you need to draw anything other than what you have shown in part (a) to assist in your solution, use the space below. Do NOT add anything to the figure in part (a).
- (c) Calculate the linear speed of the center of mass of the ball when it reaches the bottom edge of the roof.
- (d) A wagon containing a box is at rest on the ground below the roof so that the ball falls a vertical distance of 3.0 m and lands and sticks in the center of the box. The total mass of the wagon and the box is 12 kg. Calculate the horizontal speed of the wagon immediately after the ball lands in it.

Educators: apcentral.collegeboard.org/apphysicscmechanics Students: apstudent.collegeboard.org/apphysicscmechanics

CHEMISTRY

UNIT TOPIC	UNIT DESCRIPTION	ENGINEERING AND LABS	MSS/NGSS STANDARDS
Atomic Theory & Periodic Table of Element	In this unit, students investigate the atom, beginning with the development of atomic theory. They learn about charges, the effects of these charges, and properties of elements. These properties are related to the Periodic Table of Elements and students use the Periodic Table to make predictions about the properties of elements based on location on the periodic table.	Modeling matter lab activities, Bean bag isotope lab, Matter lab	HS-PS1-1 HS-PS3-5 HS-ESS1-3
Nuclear Chemistry and Electron Behavior	In this unit, students look closely at the nucleus, the different ways it can change, and the results of those changes. This understanding is then applied to natural phenomena like radioactive dating and the composition of stars. Students will also predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. Students will explore periodic trends.	Flame test lab, periodic trends lab, Colorimetry lab, Van Andel Stars Project	HS-ESS1-1 HS-ESS1-3 HS,PS1-1 HS-PS1-8
Bonding, Formulae, Nomenclature and Chemical Reactions	In this unit, students investigate the different ways atoms bond with other atoms. This includes the study of ionic and molecular compounds along with metallic and covalent network structures. Students will mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.	Design a rocket fuel delivery system to launch a pipet rocket, types of chemical reactions, Conservation of matter lab, lonic vs. covalent substance property lab	HS-PS1-1 HS-PS1-2 HS-PS1-3 HS-PS2-6 HS-PS1-7
Moles and Stoichiometry	In this unit, students investigate the mathematical relationship between reactants and products in chemical reactions. This investigation includes using patterns in familiar reactions to predict other reactions as well as using mathematical modeling to make predictions about quantities.	Design an airbag engineering pro- ject, Empirical formula lab, Nail lab, Limiting Reactants Lab	HS-PS1-2 HS-PS1-7
Intermolecular Forces and Gas Laws	In this unit, students will investigate and model the different intermolecular forces as well as the properties that can be attributed to these forces. They will relate molecular geometry to properties. Students will investigate the kinetic theory, particularly with the behavior of gases. When studying gases, they investigate the relationship between the pressure, temperature, and volume of a gas and the consequences when any of those factors are changed.	IMF Lab, Stem IMF lab, Gas laws inquiry lab, Collection of butane over water	HS-PS1-3 HS-PS3-2
Chemical Equilibrium and Aqueous Chemistry	In this unit, students continue their investigation of chemical reactions, beginning with a study of factors affecting the rate of reaction. They are introduced to the idea of reversible reactions, the concept of equilibrium, and work with Le Chatelier's principle. Finally, students investigate acids and bases in society.	Rate of reaction lab, Acids and bases, Titration, Le Chatelier's Lab	HS-PS1-5 HS-PS1-6 HS-PS1-7
Energetics	In this unit, students investigate the energy in chemical reactions. They learn about endo and exothermic reactions, calorimetry, and the effects of energy changes on Earth's systems	Candle lab, Burning of a nut, Unknown metal lab	HS-PS3-1 HS-PS3-2 HS-PS3-4 HS-PS1-4 HS-ESS2-4 HS-ESS3-2
Environmental Chemistry	In this unit, students apply their understanding of chemistry to Earth systems. Particularly, they investigate the role of chemistry in climate change. Included in their study is an investigation into possible solutions for human impacts on the environment.		HS-ESS2-2 HS-ESS2-5 HS-ESS3-5 HS-ESS3-6

PRE AP/IB CHEMISTRY

UNIT TOPIC	UNIT DESCRIPTION	ENGINEERING AND LABS	MSS/NGSS STANDARDS
Atomic Theory & Periodic Table of Element	In this unit, students investigate the atom, beginning with the development of atomic theory. They learn about charges, the effects of these charges, and properties of elements. These properties are related to the Periodic Table of Elements and students use the Periodic Table to make predictions about the properties of elements based on location on the periodic table.	Modeling matter lab activities, Bean bag isotope lab, Matter lab	HS-PS1-1 HS-PS3-5 HS-ESS1-3
Nuclear Chemistry and Electron Behavior	In this unit, students look closely at the nucleus, the different ways it can change, and the results of those changes. This understanding is then applied to natural phenomena like radioactive dating and the composition of stars. Students will also predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. Students will explore periodic trends.	Flame test lab, periodic trends lab, colorimetry lab, Van Andel stars project, Nuclear Project	HS-ESS1-1 HS-ESS1-3 HS,PS1-1 HS-PS1-8
Bonding, Formulae, Nomenclature and Chemical Reactions	In this unit, students investigate the different ways atoms bond with other atoms. This includes the study of ionic and molecular compounds along with metallic and covalent network structures. Students will mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.	Design a rocket fuel delivery system to launch a pipet rocket, types of chemical reactions, Conservation of matter lab, Ionic vs covalent substance property lab	HS-PS1-1 HS-PS1-2 HS-PS1-3 HS-PS2-6 HS-PS1-7
Moles and Stoichiometry	In this unit, students investigate the mathematical relationship between reactants and products in chemical reactions. This investigation includes using patterns in familiar reactions to predict other reactions as well as using mathematical modeling to make predictions about quantities.	Design an airbag engineering pro- ject, Empirical formula lab, Nail lab, Limiting Reactants Lab	HS-PS1-2 HS-PS1-7
Intermolecular Forces and Gas Laws	In this unit, students will investigate and model the different intermolecular forces as well as the properties that can be attributed to these forces. They will relate molecular geometry to properties. Students will investigate the kinetic theory, particularly with the behavior of gases. When studying gases, they investigate the relationship between the pressure, temperature, and volume of a gas and the consequences when any of those factors are changed.	IMF Lab, Stem IMF lab, Gas laws inquiry lab, Collection of butane over water	HS-PS1-3 HS-PS3-2
Chemical Equilibrium and Aqueous Chemistry	In this unit, students continue their investigation of chemical reactions, beginning with a study of factors affecting the rate of reaction. They are introduced to the idea of reversible reactions, the concept of equilibrium, and work with Le Chatelier's principle. Finally, students investigate acids and bases in society.	Rate of reaction lab, Acids and bases, Titration, Le Chatelier's Lab	HS-PS1-5 HS-PS1-6 HS-PS1-7
Energetics	In this unit, students investigate the energy in chemical reactions. They learn about endo and exothermic reactions, calorimetry, and the effects of energy changes on Earth's systems	Candle lab, Burning of a nut, Un- known metal lab	HS-PS3-1 HS-PS3-2 HS-PS3-4 HS-PS1-4 HS-ESS2-4 HS-ESS3-2
Environmental Chemistry	In this unit, students apply their understanding of chemistry to Earth systems. Particularly, they investigate the role of chemistry in climate change. Included in their study is an investigation into possible solutions for human impacts on the environment.		HS-ESS2-2 HS-ESS2-5 HS-ESS3-5 HS-ESS3-6

AP® CHEMISTRY

About the Advanced Placement Program® (AP®)

The Advanced Placement Program® has enabled millions of students to take college-level courses and earn college credit, advanced placement, or both, while still in high school. AP Exams are given each year in May. Students who earn a qualifying score on an AP Exam are typically eligible, in college, to receive credit, placement into advanced courses, or both. Every aspect of AP course and exam development is the result of collaboration between AP teachers and college faculty. They work together to develop AP courses and exams, set scoring standards, and score the exams. College faculty review every AP teacher's course syllabus.

AP Chemistry Course Overview

The AP Chemistry course provides students with a college-level foundation to support future advanced course work in chemistry. Students cultivate their understanding of chemistry through inquiry-based investigations, as they explore topics such as: atomic structure, intermolecular forces and bonding, chemical reactions, kinetics, thermodynamics, and equilibrium.

LABORATORY REQUIREMENT

This course requires that 25 percent of the instructional time engages students in lab investigations. This includes a minimum of 16 hands-on labs (at least six of which are inquiry based), and it is recommended that students keep a lab notebook throughout.

RECOMMENDED PREREQUISITES

Students should have successfully completed a general high school chemistry course and Algebra II.

AP Chemistry Course Content

The key concepts and related content that define the AP Chemistry course and exam are organized around underlying principles called the Big Ideas. They encompass core scientific principles, theories, and processes that cut across traditional boundaries and provide a broad way of thinking about the particulate nature of matter underlying the observations students make about the physical world. The following are Big Ideas:

- The chemical elements are the building blocks of matter, which can be understood in terms of the arrangements of atoms.
- Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the forces between them.
- Changes in matter involve the rearrangement and/or reorganization of atoms and/or the transfer of electrons.
- Rates of chemical reactions are determined by details of the molecular collisions.
- The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter.
- Bonds or attractions that can be formed can be broken. These two processes are in constant competition, sensitive to initial conditions and external forces or changes.

Science Practices

Students establish lines of evidence and use them to develop and refine testable explanations and predictions of natural phenomena. Focusing on these disciplinary practices enables teachers to use the principles of scientific inquiry to promote a more engaging and rigorous experience for AP Chemistry students. Such practices require that students:

- Use representations and models to communicate scientific phenomena and solve scientific problems:
- · Use mathematics appropriately;
- Engage in scientific questioning to extend thinking or to guide investigations within the context of the AP course;
- Plan and implement data collection strategies in relation to a particular scientific question;
- · Perform data analysis and evaluation of evidence;
- Work with scientific explanations and theories; and
- Connect and relate knowledge across various scales, concepts, and representations in and across domains.

Inquiry-Based Investigations

Twenty-five percent of instructional time is devoted to inquiry-based laboratory investigations. Students ask questions, make observations and predictions, design experiments, analyze data, and construct arguments in a collaborative setting, where they direct and monitor their progress.

AP® CHEMISTRY

AP Chemistry Exam Structure

AP CHEMISTRY EXAM: 3 HOURS 15 MINUTES

Assessment Overview

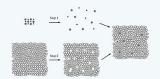
Exam questions are based on learning objectives, which combine science practices with specific content. Students learn to

- Solve problems mathematically including symbolically;
- · Design and describe experiments;
- · Perform data and error analysis
- Explain, reason, or justify answers; and
- · Interpret and develop conceptual models.

Students have a periodic table of the elements and a formula and constants chart to use on the entire exam. In addition, students may use a scientific or graphing calculator on the free-response section.

Format of Assessment

Section I: Multiple Choice: 60 Questions | 1 Hour, 30 Minutes | 50% of Exam Score


- Discrete items
- Items in sets
- A calculator is not permitted on Section I

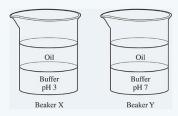
Section II: Free Response: 7 Questions | 1 Hour, 45 Minutes | 50% of Exam Score

Three long- and four short-answer questions. The seven questions ensure the assessment of the following skills: experimental design, quantitative/qualitative translation, analysis of authentic lab data and observations to identify patterns or explain phenomena, creating or analyzing atomic and molecular views to explain observations, and following a logical/analytical pathway to solve a problem.

AP CHEMISTRY SAMPLE EXAM QUESTIONS

Sample Multiple-Choice Question

The dissolution of an ionic solute in a polar solvent can be imagined as occurring in three steps, as shown in the figure at left. In step 1, the separation between ions in the solute is greatly increased, just as will occur when the solute dissolves in the polar solvent. In step 2, the polar solvent is expanded to make spaces that the ions will occupy. In the last step, the ions are inserted into the spaces in the polar solvent. Which of the following best describes the enthalpy change, ΔH , for each step?


- (A) All three steps are exothermic.
- (B) All three steps are endothermic.
- (C) Steps 1 and 2 are exothermic, and the final step is endothermic.
- (D) Steps 1 and 2 are endothermic, and the final step is exothermic.

Correct Answer: D

Sample Free-Response Question: Analyzing Lab Data and Observations

$$\operatorname{HIn}(aq) + \operatorname{H}_2\operatorname{O}(l) \rightleftarrows \operatorname{In}^-(aq) + \operatorname{H}_3\operatorname{O}^+(aq)$$

vellow blue

The indicator HIn is a weak acid with a p K_a value of 5.0. It reacts with water as represented in the equation above. Consider the two beakers below. Each beaker has a layer of colorless oil (a nonpolar solvent) on top of a layer of aqueous buffer solution. In beaker X, the pH of the buffer solution is 3, and in beaker Y, the pH of the buffer solution is 7. A small smount of HIn is placed in both beakers. The mixtures are stirred well, and the oil and water layers are allowed to separate.

- (A) What is the predominant form of HIn in the aqueous buffer in beaker Y, the acid form or the conjugate base form? Explain your reasoning.
- (B) In beaker X, the oil layer is yellow, whereas in beaker Y, the oil layer is colorless. Explain these observations in terms of both acid-base equilibria and interparticle forces.

Educators: apcentral.collegeboard.org/apchemistry Students: apstudent.collegeboard.org/apchemistry

IB DP SUBJECT BRIEF: CHEMISTRY - STANDARD LEVEL

International Baccalaureate Diploma Programme Subject Brief

Sciences:

Chemistry—Standard level

First assessments 2016 - Last assessments 2022

The IB Diploma Programme (DP) is a rigorous, academically challenging and balanced programme of education designed to prepare students aged 16 to 19 for success at university and life beyond. The DP aims to encourage students to be knowledgeable, inquiring, carring and compassionate, and to develop intercultural understanding, open-mindedness and the attitudes necessary to respect and evaluate a range of viewpoints. Approaches to teaching and learning (ATL) within the DP are deliberate strategies, skills and attitudes that permeate the teaching and learning environment. In the DP students develop skills from five ATL categories: thinking, research, social, self-management and communication.

To ensure both breadth and depth of knowledge and understanding, students must choose at least one subject from five groups: 1) their best language, 2) additional language (s), 3) social sciences, 4) experimental sciences, and 5) mathematics. Students may choose either an arts subject from group 6, or a second subject from groups 1 to 5. At least three and not more than four subjects are taken at higher level (240 recommended teaching hours), while the remaining are taken at standard level (150 recommended teaching hours). In addition, three core elements—the extended essay, theory of knowledge and creativity, action, service—are compulsory and central to the philosophy of the programme.

These IB DP subject briefs illustrate four key course components. I. Course description and aims II. Curriculum model overview

Chemistry is an experimental science that combines academic study with the acquisition of practical and investigational skills. Chemical principles underpin both the physical environment in which we live and all biological systems. Chemistry is often a prerequisite for many other courses in higher education, such as medicine, biological science and environmental science.

Both theory and practical work should be undertaken by all students as they complement one another naturally, both in school and in the wider scientific community. The DP chemistry course allows students to develop a wide range of practical skills and to increase facility in the use of mathematics. It also allows students to develop interpersonal and information technology skills, which are essential to life in the 21st century.

By studying chemistry students should become aware of how scientists work and communicate with each other. While the scientific method may take on a wide variety of forms, it is the emphasis on a practical approach through experimental work that characterizes the subject. Teachers provide students with opportunities to develop manipulative skills, design investigations, collect data, analyse results and evaluate and communicate their findings.

Through the overarching theme of the nature of science, the aims of the DP chemistry course are to enable students to:

- appreciate scientific study and creativity within a global context through stimulating and challenging opportunities
- acquire a body of knowledge, methods and techniques that characterize science and technology
- apply and use a body of knowledge, methods and techniques that characterize science and technology

III. Assessment model IV. Sample questions

- develop an ability to analyse, evaluate and synthesize scientific information
- develop a critical awareness of the need for, and the value of, effective collaboration and communication during scientific activities
- develop experimental and investigative scientific skills including the use of current technologies
- develop and apply 21st century communication skills in the study of science
- 8. become critically aware, as global citizens, of the ethical implications of using science and technology
- develop an appreciation of the possibilities and limitations of science and technology
- develop an understanding of the relationships between scientific disciplines and their influence on other areas of knowledge.

II. Curriculum model overview

Component	Recommended teaching hours 95	
Core		
Stoichiometric relationships	13.5	
2. Atomic structure	6	
3. Periodicity	6	
Chemical bonding and structure	13.5	
5. Energetics/thermochemistry	9	
6. Chemical kinetics	7	
7. Equilibrium	4.5	
8. Acids and bases	6.5	
9. Redox processes	8	
10.Organic chemistry	11	
11. Measurement and data processing	10	

IB DP SUBJECT BRIEF: CHEMISTRY - STANDARD LEVEL

Option (choice of one out of four)	15
A. Materials	15
B. Biochemistry	15
C. Energy	15
D. Medicinal chemistry	15
Practical scheme of work	40
Prescribed and other practical activities	20
	10
Individual investigation	10
Individual investigation (internally assessed)	10

The group 4 project

The group 4 project is a collaborative activity where students from different group 4 subjects, within or between schools, work together. It allows for concepts and perceptions from across disciplines to be shared while appreciating the environmental, social and ethical implications of science and technology. It can be practically or theoretically based and aims to develop an understanding of the relationships between scientific disciplines and their influence on other areas of knowledge. The emphasis is on interdisciplinary cooperation and the scientific processes.

III. Assessment model

It is the intention of this course that students are able to fulfill the following assessment objectives:

- 1. Demonstrate knowledge and understanding of:
- facts, concepts, and terminology
- methodologies and techniques
- communicating scientific information.
- Apply
- facts, concepts, and terminology
- · methodologies and techniques
- · methods of communicating scientific information.
- 3. Formulate, analyse and evaluate:
- · hypotheses, research questions and predictions
- · methodologies and techniques
- · primary and secondary data
- scientific explanations.
- Demonstrate the appropriate research, experimental, and personal skills necessary to carry out insightful and ethical investigations.

Assessment at a glance

Type of assessment	Format of assessment	Time (hours)	Weighting of final grade (%)
External		3	80
Paper 1	30 multiple-choice questions (Core)	0.75	20
Paper 2	Short answer and extended response questions (Core)	1.25	40
Paper 3	Data- and practical-based questions, plus short answer and extended response questions on the option	1	20
Internal		10	20
Individual investigation	Investigation and write-up of 6 to 12 pages	10	20

IV. Sample questions

- What is the total number of atoms in 0.50 mol of
- 1,4-díamínobenzene, H₂NC₆H₄NH₂?
 - A. 16.0×10^{23}
 - B. 48.0 x 10²³ C. 96.0 x 10²³
 - C. 90.0 X 10²⁰
- D. 192.0 x 10²³

(Avogadro's constant (L or N_A) = 6.0 × 10²³ mol⁻¹.) (Paper 1)

- Many automobile manufacturers are developing vehicles that use hydrogen as a fuel.
- Suggest why such vehicles are considered to cause less harm to the environment than those with internal combustion engines.
- Hydrogen can be produced from the reaction of coke with steam: C(s)+2H₂O(g)→2H₂(g)+CO₂(g)

Using information from section 12 of the data booklet, calculate the change in enthalpy, ΔH , in kJ mol⁻¹, for this reaction. (Paper 2)

About the IB: For over 40 years the IB has built a reputation for high-quality, challenging programmes of education that develop internationally minded young people who are well prepared for the challenges of life in the 21st century and able to contribute to creating a better, more peaceful world.

For further information on the IB Diploma Programme, and a complete list of DP subject briefs, visit: http://www.ibo.org/diploma/.

Complete subject quides can be accessed through the IB online curriculum centre (OCC) or purchased through the IB store: http://store.ibo.org.

For more on how the DP prepares students for success at university, visit: www.ibo.org/recognition or email: recognition@ibo.org.

BIOLOGY AND BIOLOGY HONORS

UNIT TOPIC	UNIT DESCRIPTION	ENGINEERING AND LABS	MSS/NGSS STANDARDS	
Introduction Characteristics of Life	Students will investigate the characteristics of life, measurement in biology, and microscopy.	Daphnia HR & drugs,	HS-LS1-2	
Ecology	In this unit, students will investigate the ecological principles of conservation biology, population ecology, community ecology, and biodiversity. This will include populations, carrying capacity, and the flow of matter and energy.	Travelling Nitrogen Lessons of the Kaibab EcoJar	HS-LS2-4 HS-LS2-1 HS-LS2-2 HS-LS2-6 HS-LS2-7 HS-LS4-6 HS-ESS2-6 HS-ESS3-3	
Chemistry of Life/ Biochemistry	In this unit students create a model to cycling of carbon in the environment, investigate the chemistry of water, the role of enzymes, and discuss the roles of different biological macromolecules.	nment, investigate the role of enzymes, and Testing OrganicsBiochemistry		
Cells	In this unit students investigate cell membrane structure and function with a focus on transport of molecules across a semipermeable membrane. Students explore organelle function as it relates to the overall function of cellular and overall system function.	Construct a plasma membrane Gummy Bear Osmosis	HS-LS1-2	
Cell Cycle	In this unit students investigate mitotic division of cells to create models of cell division as it explain to issue of tissue growth, repair and organisms asexual reproduction Students will explore surface area to volume ratio.	Observe prepared slides of allium roots Nutrient agar cell size lab Osmosis diffusion of an artificial cell (dialysis tube)	HS-LS1-4	
Photosynthesis Cell Respiration	nthesis In this unit students will focus on the transfer Leaf disk lab		HS-LS1-3 HS-LS1-5 HS-LS1-7HS- LS2-3	
Genetics	Students will investigate the principles of genetics including monohybrid and dihybrid crosses, codominance, incomplete dominance, genetic disorders, pedigree analysis, and karyotyping.	rid and dihybrid Pedigree Analysis I Pedigree Analysis		
DNA/RNA	In this unit, students will investigate the structure and function of DNA and RNA including discovery of, replication, transcription, translation, and connections to heredity.	CHONPS (Transcript/Translate) lab	HS-LS1-1 HS-LS3-1	
Virus-Bacteria	In this unit, students will explore the structure, function, and applications/connections to humans for bacteria and viruses.	Tracking the Plague Antimicrobial resistance lab S. marcescens Lab		
Evolution	In this unit students will explore evolutionary biology through investigations focusing on coevolution, speciation, natural selection, cladistics, evidence for evolution, and mechanisms of evolution.		HS-LS2-8 HS-LS4-1 HS-LS4-2 HS-LS4-3 HS-LS4-4 HS-LS-4-5 HS-ESS2-7	

AP® BIOLOGY

About the Advanced Placement Program® (AP®)

The Advanced Placement Program® has enabled millions of students to take college-level courses and earn college credit, advanced placement, or both, while still in high school. AP Exams are given each year in May. Students who earn a qualifying score on an AP Exam are typically eligible to receive college credit and/or placement into advanced courses in college. Every aspect of AP course and exam development is the result of collaboration between AP teachers and college faculty. They work together to develop AP courses and exams, set scoring standards, and score the exams. College faculty review every AP teacher's course syllabus.

AP Biology Course Overview

AP Biology is an introductory college-level biology course. Students cultivate their understanding of biology through inquiry-based investigations as they explore the following topics: evolution, cellular processes — energy and communication, genetics, information transfer, ecology, and interactions.

LABORATORY REQUIREMENT

This course requires that 25 percent of the instructional time will be spent in hands-on laboratory work, with an emphasis on inquiry-based investigations that provide students with opportunities to apply the science practices.

PREREQUISITE

Students should have successfully completed high school courses in biology and chemistry.

AP Biology Course Content

The course is based on four Big Ideas, which encompass core scientific principles, theories, and processes that cut across traditional boundaries and provide a broad way of thinking about living organisms and biological systems. The following are Big Ideas:

- The process of evolution explains the diversity and unity of life.
- Biological systems utilize free energy and molecular building blocks to grow, to reproduce, and to maintain dynamic homeostasis.
- Living systems store, retrieve, transmit, and respond to information essential to life processes.
- Biological systems interact, and these systems and their interactions possess complex properties.

Science Practices

Students establish lines of evidence and use them to develop and refine testable explanations and predictions of natural phenomena. Focusing on these disciplinary practices enables teachers to use the principles of scientific inquiry to promote a more engaging and rigorous experience for AP Biology students. Such practices require that students:

- Use representations and models to communicate scientific phenomena and solve scientific problems;
- · Use mathematics appropriately;
- Engage in scientific questioning to extend thinking or to guide investigations within the context of the AP course;
- Plan and implement data collection strategies in relation to a particular scientific question;
- Perform data analysis and evaluation of evidence:
- . Work with scientific explanations and theories; and
- Connect and relate knowledge across various scales, concepts, and representations in and across domains.

Inquiry-Based Investigations

Twenty-five percent of instructional time is devoted to hands-on laboratory work with an emphasis on inquiry-based investigations. Investigations require students to ask questions, make observations and predictions, design experiments, analyze data, and construct arguments in a collaborative setting, where they direct and monitor their progress.

AP® BIOLOGY

AP Biology Exam Structure

AP BIOLOGY EXAM: 3 HOURS

Assessment Overview

Exam questions are based on learning objectives, which combine science practices with specific content. Students learn to

- · Solve problems mathematically including symbolically
- Design and describe experiments and analyze data and sources of error
- Explain, reason, or justify answers with emphasis on deeper, conceptual understanding
- Interpret and develop conceptual models

Due to the increased emphasis on quantitative skills and application of mathematical methods in the questions, students are allowed to use simple four-function calculators (with square root) on the entire exam. Students also receive a formula list as part of their testing materials.

Format of Assessment

Section I: Multiple Choice | 69 Questions | 1 Hour, 30 Minutes | 50% of Exam Score

Multiple-Choice: 63 Questions

- · Discrete Questions
- Questions in sets

Grid-In: 6 Questions

- Discrete Questions
- · Questions integrate biology and mathematical skills

Section II: Free Response | 8 Questions | 1 Hour, 30 Minutes (includes 10-minute reading period) | 50% of Exam Score

- Long Free Response (2 questions, one of which is lab or data-based)
- Short Free Response (6 questions, each requiring a paragraphlength argument/response)

AP BIOLOGY SAMPLE EXAM QUESTIONS

Sample Multiple-Choice Question

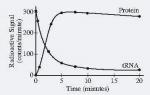
Two flasks with identical medium containing nutrients and glucose are inoculated with yeast cells that are capable of both anaerobic and aerobic respiration. Culture 1 is then sealed to prevent fresh air from reaching the culture; culture 2 is loosely capped to permit air to reach the culture. Both flasks are periodically shaken.

Which of the following best **predicts** which culture will contain more yeast cells after one week, and most accurately **justifies** that prediction?

- A. Culture 1, because fresh air is toxic to yeast cells and will inhibit their growth
- B. Culture 1, because fermentation is a more efficient metabolic process than cellular respiration
- C. Culture 2, because fresh air provides essential nitrogen nutrients to the culture
- D. Culture 2, because oxidative cellular respiration is a more efficient metabolic process than fermentation.

Correct Answer: D

Sample Grid-In Question


The data below demonstrate the frequency of tasters and non-tasters in an isolated population at Hardy-Weinberg equilibrium. The allele for non-tasters is recessive.

How many of the tasters in the population are heterozygous for tasting?

Tasters	Non-Tasters
8235	4328

Sample Short Free-Response Question

The role of tRNA in the process of translation was investigated by the addition of tRNA with attached radioactive leucine to an in vitro translation system that included mRNA and ribosomes. The results are shown by the graph.

In a **short** paragraph, describe how this figure justifies the claim that the role of tRNA is to carry amino acids that are then transferred from the tRNA to growing polypeptide chains.

Educators: apcentral.collegeboard.org/apbiology Students: apstudent.collegeboard.org/apbiology

IB DP SUBJECT BRIEF: BIOLOGY - HIGHER LEVEL

International Baccalaureate Diploma Programme Subject Brief

Sciences:

Biology—Higher level

First assessments 2016 - Last assessments 2022

The IB Diploma Programme (DP) is a rigorous, academically challenging and balanced programme of education designed to prepare students aged 16 to 19 for success at university and life beyond. The DP aims to encourage students to be knowledgeable, inquiring, caring and compassionate, and to develop intercultural understanding, open-mindedness and the attitudes necessary to respect and evaluate a range of viewpoints. Approaches to teaching and learning (ATL) within the DP are deliberate strategies, skills and attitudes that permeate the teaching and learning environment. In the DP students develop skills from five ATL categories: thinking, research, social, self-management and communication.

To ensure both breadth and depth of knowledge and understanding, students must choose at least one subject from five groups: 1) their best language, 2) additional language (s), 3) social sciences, 4) experimental sciences, and 5) mathematics. Students may choose either an arts subject from group 6, or a second subject from groups 1 to 5. At least three and not more than four subjects are taken at higher level (240 recommended teaching hours), while the remaining are taken at standard level (150 recommended teaching hours). In addition, three core elements—the extended essay, theory of knowledge and creativity, action, service—are compulsory and central to the philosophy of the programme.

These IB DP subject briefs illustrate four key course components.

I. Course description and aims.

II. Curriculum model overview.

III. Assessment model IV. Sample guestions

I. Course description and aims

Biology is the study of life. The vast diversity of species makes biology both an endless source of fascination and a considerable challenge. Biologists attempt to understand the living world at all levels from the micro to the macro using many different approaches and techniques. Biology is still a young science and great progress is expected in the 21st century. This progress is important at a time of growing pressure on the human population and the environment.

By studying biology in the DP students should become aware of how scientists work and communicate with each other. While the scientific method may take on a wide variety of forms, it is the emphasis on a practical approach through experimental work that characterizes the sciences. Teachers provide students with opportunities to design investigations, collect data, develop manipulative skills, analyse results, collaborate with peers and evaluate and communicate their findings.

Through the overarching theme of the nature of science, the aims of the DP biology course are to enable students to:

- appreciate scientific study and creativity within a global context through stimulating and challenging opportunities
- acquire a body of knowledge, methods and techniques that characterize science and technology
- apply and use a body of knowledge, methods and techniques that characterize science and technology
- develop an ability to analyse, evaluate and synthesize scientific information
- develop a critical awareness of the need for, and the value of, effective collaboration and communication during scientific activities

- develop experimental and investigative scientific skills including the use of current technologies
- develop and apply 21st century communication skills in the study of science
- become critically aware, as global citizens, of the ethical implications of using science and technology
- develop an appreciation of the possibilities and limitations of science and technology
- 10 develop an understanding of the relationships between scientific disciplines and their influence on other areas of knowledge.

II. Curriculum model overview

Component	Recommended teaching hours
Core	95
1. Cell biology	15
2. Molecular biology	21
3. Genetics	15
4. Ecology	12
5. Evolution and biodiversity	12
6. Human physiology	20
Additional higher level	60
7. Nucleic acids	9
Metabolism, cell respiration and photosynthesis	14
9. Plant biology	13
10. Genetics and evolution	8
11.Animal physiology	16

IB DP SUBJECT BRIEF: BIOLOGY - HIGHER LEVEL

Option (Choice of one out of four)	25
A. Neurobiology and behaviour	25
B. Biotechnology and bioinformatics	25
C. Ecology and conservation	25
D. Human physiology	25
Practical scheme of work	60
Prescribed and other practical activities	40
Individual investigation	10
Group 4 project	10

The group 4 project

The group 4 project is a collaborative activity where students from different group 4 subjects, within or between schools, work together. It allows for concepts and perceptions from across disciplines to be shared while appreciating the environmental, social and ethical implications of science and technology. It can be practically or theoretically based and aims to develop an understanding of the relationships between scientific disciplines and their influence on other areas. The emphasis is on interdisciplinary cooperation and the scientific processes

III. Assessment model

It is the intention of this course that students are able to fulfill the following assessment objectives:

- 1. Demonstrate knowledge and understanding of:
- facts, concepts, and terminology
- · methodologies and techniques
- · communicating scientific information.
- 2. Apply:
 - facts, concepts, and terminology
- · methodologies and techniques
- · methods of communicating scientific information.
- 3. Formulate, analyse and evaluate:
- · hypotheses, research questions and predictions
- · methodologies and techniques
- · primary and secondary data
- · scientific explanations.
- 4. Demonstrate the appropriate research, experimental, and personal skills necessary to carry out insightful and ethical investigations.

Assessment at a glance

Type of assessment	Format of assessment	Time (hours)	Weighting of final grade (%)
External		4.5	80
Paper 1	40 multiple-choice questions	1	20
Paper 2	Data-based, short answer and extended response questions	2.25	36
Paper 3	Data-based, short answer and extended response questions	1.25	24
Internal		10	20
Individual investigation	Investigation and write-up of 6 to 12 pages	10	20

IV. Sample questions

- Membrane proteins of mice cells were marked with green and membrane proteins of human cells were marked with red. The cells were fused together. What would be seen after two hours? (Paper 1)
- The species is the basis for naming and classifying organism.
 - o Explain how new species can emerge by
 - directional selection
 - disruptive selection
 - · polyploidy.
 - o Outline the advantages to scientists of the binomial system for naming species.
 - o Describe the use of dichotomous keys for the identification of specimens. (Paper 2)
- Brain death is a clinical diagnosis based on the absence of neurological function, with a known irreversible cause of coma.
 - o Explain a named method to assess brain damage.
 - o Distinguish between a reflex arc and other responses by the nervous system.
 - o Describe the events that occur in the nervous system when something very hot is touched. (Paper 3)

About the IB: For over 40 years the IB has built a reputation for high-quality, challenging programmes of education that develop internationally minded young people who are well prepared for the challenges of life in the 21st century and able to contribute to creating a better, more peaceful world.

For further information on the IB Diploma Programme, and a complete list of DP subject briefs, visit: http://www.ibo.org/diploma/.

Complete subject guides can be accessed through the IB online curriculum centre (OCC) or purchased through the IB store: http://store.ibo.org.

For more on how the DP prepares students for success at university, visit: www.ibo.org/recognition or email: recognition@ibo.org.

ADVANCED PROJECTS IN PHYSICS AND ENGINEERING

UNIT TOPIC	UNIT DESCRIPTION	ENGINEERING AND LABS	MSS/NGSS STANDARDS
Engineering Tools and Measurements	Students will learn to use various building and measurement tools used by engineers. This unit will also include engineering measurement methods and standards.	Survey Lab	
Linear Motion	Introduction to kinematics. Measuring, computing and interpreting accelerations, velocity and displacement. Emphasis on problem solving and introducing the skills to apply mathematical descriptions to real world situations.	Car Ramp Project	HS-ESS1-4 HS-PS2-4
Forces	Basic introduction to Newton's laws and applications. Includes extensive use of free-body vector diagrams to solve real world problems.	Parachute Project	HS-PS2-1
Projectiles	Introduction to 2-d kinematics. Measuring, computing and interpreting object acceleration, velocity and displacements in the both vertical and horizontal which are under the influence of gravity and air resistance. Emphasis on problem solving and introducing the skills to apply mathematical descriptions to real world situations.	Launcher Project	HS-ESS1-4 HS-PS2-4
Energy	Students will learn conservation of energy, power and work energy theorems. Students will design and build working mechanical devices and measure efficiency. Students will design and build working mechanical devices and measure efficiency.	Roller Coaster/Self Propelled Cars	HS-PS3-1 HS-PS3-2 HS-PS3-3
Torque and Rotation	This unit introduces centripetal acceleration and forces, rotational motion and torque. Students will design and build working rotational devices and measure torque and efficiency.	Torque and Spinning Toys	HS-ESS1-4 HS-PS2-4
Fluid Power and Hydraulics	Students will learn basic fluid physics including Pascal's laws and hydraulic power applications.	Fluid Power Project	HS-PS2-1 HS-PS2-6
Mechanical Waves and Sound	Mathematical representations of frequency, wavelength and wave speed. Interactions between waves and matter.	Musical Instrument Project	HS-PS4-1
Optics/Light	Mathematical representations of frequency, wavelength and wave speed. Transfer and storage of information. Interactions between waves and matter. EM radiation and wave particle duality.	Build Optical Device	HS-PS4-3 HS-PS4-4.
Electricity and Magnetism Final Project	Introduction to topics in electricity and magnetism including; static electricity, electrical magnetic force, electric current, voltage, and resistance. Analysis of electric circuits and devices will include Ohm's Law calculations. This study will include analysis of electrical technology that utilize electrify and magnetic forces.	Build Electromagnetic device	HS-PS2-5 HS-PS3-1

ANATOMY AND PHYSIOLOGY

UNIT TOPIC	UNIT DESCRIPTION	ENGINEERING AND LABS	MSS/NGSS STANDARDS
Characteristics of Life & Feedback	Students will learn: processes/characteristics of life; In particular students learn and investigate homeostasis	Feedback/Homeostasis Lab	HS-LS1-3 HS-LS3-3
Organization of Body	Students will learn: anatomical terms related to directions and organization, the levels of organization within the body, and a general overview of the systems present	Produce Person	HS-PS2-6 HS-LS1-2 HS-LS1-1
Histology	Students will learn: the various types of tissues present in the body and how their structure relates to function	Tissue Engineering, Microscopy	HS-LS1-2 HS-ETS1-2.
Integumentary System	Students will learn: components of system (skin and accessory structures), functions of the layers, how/why skin is colored, and how the system is interdependent with other systems		HS-LS2-8 HS-LS1-4 HS-LS3-3 HS-LS4-4
Skeletal System	Students will learn: microscopic to macroscopic structure of bones, how bones grow/adapt, various classifications of joints, and the types of movements produced.	Design a bone/join Joint dissection	HS-LS1-4 HS-LS3-3 HS-PS2-6
Muscular System	Students will learn: how muscles are organized/ structured at various levels, the process of and what influences contraction, and how muscles are fueled.	Fatigue	HS-LS1-6 HS-LS1-7 HS-LS2-3 HS-LS4-4
Nervous System	Students will learn: types of tissue present in the system; how nerves send conduct impulses	Brain dissection	HS-LS1-4
Senses	Students will learn: the types of sensory receptors in the body, the difference between special and general senses, options to look more into eyes, nose, ears, mouth	Eye dissection	
Circulatory System	Students will learn: Differences between veins and arteries, the structure of the heart, cardiac cycle and output	Cardiac Output Heart dissection	HS-LS4-4

ENVIRONMENTAL SCIENCE

UNIT TOPIC	UNIT DESCRIPTION	ENGINEERING AND LABS	MSS/ STAND	NGSS DARDS
Introduction & Sustainability	This unit explores the fundamental properties of environmental science including sustainability. The unit will include some aspects of the history of environmental science, explorations into different aspects of the environment, sustainable decision making, and stakeholders involved in environmental issues.	Hetch Hetchy DebateSustainable Island	HS-ESS3-1 HS-ESS3-2 HS-ESS3-3 HS-ESS3-6	
Biodiversity, Biomes, & Conservation Ecology	Principles of conservation ecology are explored including biomes, keystone species, population & community ecology along with management strategies for ecosystem management such as edge effects and changing environments	Park or Zoo Design & Enrichment Project	HS-ESS2-6 HS-ESS3-1 HS-ESS3-3 HS-LS2-1 HS-LS2-2	HS-LS2-4 HS-LS2-6 HS-LS4-5 HS-LS4-6
Resource Manage- mentForestry/Ag/ Fisheries	Exploring various resources that have a biological connection such as agriculture, forestry, and fisheries to apply concepts of the Tragedy of the Commons, wise use of resources, and limitations and impacts of resource management decisions.	Various Projects and Focus may include forestry pro- jects, paper industry, recycling, prairie restoration, soils labs, or fisheries	HS-ESS3-1 HS-ESS3-2 HS-ESS3-3 HSESS3-6	
Earth Resources Mining & Fossil Fuels	Mining exploration and fossil fuels will be explored through activities and lessons that highlight the processes of exploration, extraction, processing, and products. This unit continues to highlight sustainable methods, economic factors and understandings, market influences, and conservation.		HS-ESS2-2 HS-ESS2-4 HS-ESS3-1 HS-ESS3-2	HS-ESS3-3 HS-ESS3-4 HS-ESS3-6
Earth ResourcesAir & Water	Water resources are investigated for drinking water, surface water, and groundwater. The unit also connects to water quality and pollution. Geological principles such as river dynamics, water supply infrastructure, clean water, and wastewater treatment are integrated into this unit. Further connections to air quality and air pollutants will be discussed.	Water quality lab, River systems [stream dynamics]	HS-ESS2-2 HS-ESS2-4 HS-ESS2-5 HS-ESS3-1	HS-ESS3-3 HS-ESS3-4 HS-ESS3-6
Pollution	This is an extension unit to connect water, air, mineral, and fossil fuel resources for different types of pollutants, contaminant transport, remediation strategies, and engineering solutions	for different transport, Transport Environmental Chemistry Activity		HS-ESS3-4 HS-ESS3-5 HS-ESS3-6
Energy Resources Alt Energy	Energy resources and different alternatives to fossil fuels are explored in this unit. Unit activities will include investigating different energy technologies and energy transfer. Deeper studies will be done through wind turbines including building and testing a small wind turbine to investigate efficiency.	Windmill Project	HS-PS3-1 HS-PS3-3 HS-ESS3-1 HS-ESS3-2 HS-ESS3-3	
Resource ManagementLand Use, Urbanization, & Urban Planning	In this unit, aspects of land use and land use planning are explored including SMART growth principles, green transportation, and integrating different green strategies into an urban setting.	City Planning Project	HS-ESS3-1 HS-ESS3-2 HS-ESS3-3 HS-ESS3-4 HS-ESS3-6	
Geologic Hazards & Geophysics	Different geologic hazards impact their sur- roundings. In this unit various geologic haz- ards are explored including plate tectonics, volcanoes, tsunamis, mass movement, and other earth processes that influence the environment.	Earthquake labs, volcano labs, mass movement activity	HS-ESS1-5 HS-ESS2-1 HS-ESS2-2	HS-ESS2-3 HS-ESS2-5 HS-ESS3-1
Geological & Ecological Process & Applications Coastal/Dunes- Deserts/Glaciers- Mountains	As a unit, this is a choice section that allows students to investigate various geologic settings and investigate the physical properties of the areas, environmental issues that are specific to those settings, and look at the ecology of that particular region.	Sand Study or Other Projects investigating processes and applications	HS-ESS1-5 HS-ESS2-1 HS-ESS2-2 HS-ESS2-3 HS-ESS2-5 HS-ESS2-5	

ENVIRONMENTAL SCIENCE

UNIT TOPIC	UNIT DESCRIPTION	ENGINEERING AND LABS		NGSS DARDS
Marine Science & Oceanography	Investigations into the processes of the ocean and investigate how humans impact ocean ecosystems		HS-ESS2-1 HS-ESS2-2 HS-ESS2-5 HS-ESS3-1 HS-ESS3-3	HS-ESS3-5 HS-LS2-1 HS-LS2-2 HS-LS2-4 HS-LS2-6 HS-LS4-6
Meteorology & Climate	This unit includes investigations into basic meteorology terms and concepts, meteorological measurements, interpretations of meteorological data, severe weather and its effect on the environment. The unit also focuses on climatology and studying what impacts local and global climate, interpreting climatological data, and investigating models involving the greenhouse effect.	Weather observations, modeling, and Model UN Debate	HS-ESS2-2 HS-ESS3-1 HS-ESS3-4 HS-ESS3-5 HS-ESS3-6	
Sustainable Design	Students will investigate elements of sustainable design including materials, heating and cooling, energy supply, water use, and other elements that impact the impact of a home on its environment and environmental factors that impact design.	Design a Sustainable Park Visitor Center or Home	HS-ESS3-2 HS-ESS3-2 HS-ESS3-2 HS-ESS3-4 HS-ESS3-6	
Space & Planetary Geology Environmental Systems	Students will investigate different aspects of astronomy as it connects to Earth's environment, the environment of other planets, planetary geology, exoplanets, and connections to elements that have influenced Earth's history and understanding our place in the universe.	Investigations in planetary geology, mapping, and habitat system design	HS-ESS1-1 HS-ESS1-2 HS-ESS1-3 HS-ESS1-4 HS-ESS1-6	
Geographic Information Systems (GIS)	Using remote sensing data, Google earth, and other aerial techniques to investigate aspects of topography, land use, ecological change, and other environmental connections and applications.	Topographic maps lab3D topographic features activityGIS and Landsat image lab	HS-ESS3-3 HS-ESS3-4	
Environmental Engineering	Environmental engineering as a unit allows for specialized investigations into areas of environmental engineering to support the engineering process as it applies to a specific environmental question.	Various investigations into engineering solutions for different environmental problems [such as constructing a dam to control flow rates, solar heating systems, or bridges	HS-ESS3-2 HS-ESS3-3 HS-ESS3-4	
Power of One Sustainability [Senior Project]	The capstone unit of this project-based course is to create an opportunity for students to investigate an area of personal engagement within the topic of environmental science. The project requires research-based support as well as experimental/engineering process data in support of a student generated claim.	Various environmental science & engineering based research projectsstudent driven [examples: Solar Cookers, aquaponics, road salt impacts on plants, etc.		

FORENSICS AND GENETICS

UNIT TOPIC	UNIT DESCRIPTION	ENGINEERING AND LABS	MSS/NGSS STANDARDS
Forensic Law	The students will learn the basic differences between criminology and criminalistics.		
Crime Scene	Students will learn to document crime scenes with measurement and photos.		
Evidence	Students will learn the differences between class and individual evidence.		HS-LS3-1 HS-LS3-2
Fingerprinting	Students will learn the techniques of finger- printing, tire tracks, shoe size vs. height, and biometrics.	Fingerprint-Lifted, Dusted and Superglue Fumed Shoe prints Biometrics Tire Tracks and Numbers on Tires	HS-PS1-2 HS-LS3-2
Hair	Students will differentiate between types of human and animal hair.	Animal and Human Hair Scale Testing with nail polish	HS-LS1-4
Fiber	Students will identify the different characteristics of fibers.	Burn Lab for Fibers and Chemical Testing	HS-PS2-6
Drug Analysis	Students will determine the different types of drugs based on lab experiences and the effects of the job.		HS-PS1-2 HS-PS1-5
Glass	Students will analyze different types of glass and look at their fracture patterns.		
Document Forgery	Students will analyze different types of glass and look at their fracture patterns to determine the entry/exit points of bullets in glass.		
Blood Spatter Analysis	Students will look at blood spatter and determine what type of impact, where the shot came from and direction of blood flow based on the cast away patterns.		HS-PS2-3
Genetics	Students will learn the probability of different types of crosses and structure of chromosomes. They will learn about genetic disorders, karyotypes and pedigrees. Students will learn about the newest discoveries in the genetics world. They will also talk about the bioethics that are involved.		HS-LS1-1 HS-LS3-1 HS-LS4-1

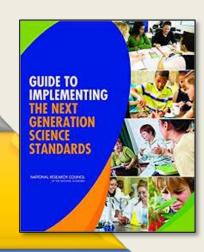
Secondary Science Recommendations

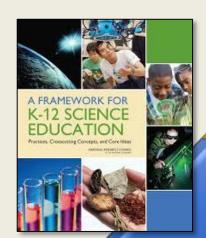
Presentation to the Board of Education East Grand Rapids Public Schools March 18, 2019

Presenters

Next Generation Science: Jenny Fee

Middle School Science Recommendation: Lindsey Lantz, Kevin Vance, Sarah Youngs High School Science Recommendation: Heather Carlson, Matt Harold, Bill Trapp


Next Generation Science Standards


EGRPS K-12 Curriculum

Michigan Science Standards

Next Generation Science Standards

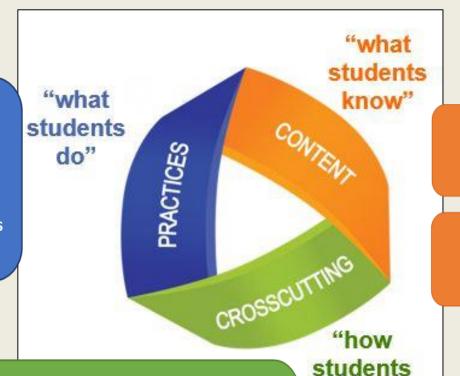
A Framework for K-12 Science Education

Next Generation Science – 3D Science Learning

Science and **Engineering Practices**

Asking questions and defining problems

Developing and using models


Planning and carrying out investigations

Analyzing and interpreting data

Using mathematics and computational thinking

Constructing explanations and designing solutions

Engaging in argument from evidence

think"

Disciplinary Core Ideas (DCIs)

Physical Science

Earth and Space Science

Life Science

Engineering, Technology, & Applications of Science

Crosscutting
Concepts (CCCs)

Cause and Effect
Scale, Proportion, and Quantity
Systems and System Models
Energy and Matter in Systems
Structure and Function
Stability and Change of Systems

Patterns

Next Generation Science Instruction

- Modeling
- Phenomena Driven
- Inquiry-based
- Problem Solving
- Integration of Engineering, Technology, and Design
- Integration of Research, Writing, Analysis, and Reflection

Science instruction will involve less :	Science instruction will involve more :
Rote memorization of facts and terminology	Facts and terminology learned as needed while developing explanations and designing solutions supported by evidence-based arguments and reasoning
Learning of ideas disconnected from questions about phenomena	Systems thinking to explain phenomena, giving context for the ideas to be learned and modeled
Teachers providing information to the whole class	Students conducting investigations, solving problems, and engaging in discussions with teachers' facilitation
Teachers posing questions with only one right answer	Students discussing open-ended questions that focus on the strength of the evidence used to generate claims
Students reading textbooks and answering questions at the end of each chapter	Students reading multiple sources and developing summaries of information
Worksheets	Student learning reflected through journals, reports, posters, and media presentations that explain and argue

MSS/NGSS K-12 Scope and Sequence

SCOPE AND SEQUENCE OF MICHIGAN K-12 SCIENCE TOPICS

	TOPICS	К	1	2	3	4	5	6-8	9-12
	Energy					٧		٧	٧
픙	Structures & Properties of Matter			٧			٧	٧	٧
PHYSICAL SCIENCE	Waves		٧			٧		٧	٧
YSICAL	Forces & Interactions	٧			٧			٧	٧
Ŧ	Waves and Electromagnetic Radiation							٧	٧
	Chemical Reactions							٧	٧
	Earth's Systems			٧		٧	٧	٧	٧
щ	Weather & Climate	٧		٧	٧			٧	٧
CIENC	Space Systems		٧				٧	٧	٧
EARTH SCIENCE	History of the Earth							٧	٧
3	Human Impacts							٧	
	Human Sustainability								٧
	Inheritance and Variation of Traits				٧				٧
	Interdependent Relationships in Ecosystems	٧		٧	٧			٧	٧
핑	Matter and Energy in Organisms and Ecosystems						٧	٧	٧
LIFE SCIENCE	Structure, Function & Information Processing		٧			٧		٧	٧
5	Growth, Development and Reproduction of Organisms							٧	
	Natural Selection and Adaptations							٧	
	Natural Selection and Evolution								٧
ETSA	Engineering and Design	٧	٧	٧	٧	٧	٧	٧	٧

Middle School Science Recommendations for Approval

Lindsey Lantz Kevin Vance Sarah Youngs

Middle School Science Curriculum Realignment Process

- 2015-2016 Previewed and explored the NGSS/MSS (Next Generation Science Standards/Michigan Science Standards).
- **2016-2017** Analyzed old curriculum (GLCE's) looking for gaps and misalignments with NGSS/MSS.
- 2017-2018 Realigned new standards to address gaps, misalignments, and developmental appropriateness for middle school learners. Addressed areas of concern.
- 2018-2019 Currently piloting new NGSS/MSS curriculum.

Previewed and explored the NGSS/MSS (Next Generation Science Standards/Michigan Science Standards)

MS-LS2 Ecosystems: Interactions, Energy, and Dynamics

MS-LS2 Ecosystems: Interactions, Energy, and Dynamics

Students who demonstrate understanding can:

- MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. [Clarification Statement: Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.]
- MS-LS2-2. Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. [Clarification Statement: Emphasis is on predicting consistent patterns of interactions in different ecosystems in terms of the relationships among and between organisms and abjotic components of ecosystems. Examples of types of interactions could include competitive, predatory, and mutually beneficial.]
- MS-LS2-3. Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. [Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.] [Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.]
- MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. [Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.]
- MS-LS2-5. Evaluate competing design solutions for maintaining biodiversity and ecosystem services.* [Clarification Statement: Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.]

The performance expectations above were developed using the following elements from the NRC document. A Framework for K-12 Science Education.

Science and Engineering Practices

Developing and Using Models

Modeling in 6-8 builds on K-5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and

 Develop a model to describe phenomena. (MS-LS2-3) Analyzing and Interpreting Data

Analyzing data in 6-8 builds on K-5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

 Analyze and interpret data to provide evidence for phenomena. (MS-LS2-1)

Constructing Explanations and Designing

Disciplinary Core Ideas

LS2.A: Interdependent Relationships in Ecosystems

- . Organisms, and populations of organisms, are dependent on their environmental interactions both with other living things and with nonliving factors. (MS-LS2-1)
- In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with each other for limited resources, access to which consequently constrains their growth and reproduction. (MS-LS2-1)
- Growth of organisms and population increases are limited by access to resources. (MS-LS2-1)
- Similarly, predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial interactions, in contrast, may become so interdependent that each organism requires the other for

Crosscutting Concepts

· Patterns can be used to identify cause and effect relationships. (MS-LS2-2)

Cause and Effect

 Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-LS2-1)

Energy and Matter

 The transfer of energy can be tracked as energy flows through a natural system. (MS-LS2-3)

Stability and Change

 Small changes in one part of a system might. cause large changes in another part. (MS-LS2-4),(MS-LS2-5)

Analyzed old curriculum (GLCE's) looking for gaps and misalignments with NGSS/MSS

MS-ESS1-2. Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system. [Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions

within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students' school or state).]

[Assessment Boundary: Assessment does not include Kepler's Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.]

Model of solar system movement on paper, cardboard with push pins, computer graphics Demonstration or Lab with objects of different masses

MS-ESS1-3. Analyze and interpret data to determine scale properties of objects in the solar system. [Clarification Statement: Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object's layers (such as crust and atmosphere), surface features (such as volcanoes), and object radius. Examples of data include statistical information, drawings and photographs, and models.]

[Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system bodies.]

Black: Grade-specific Standard

Green: Shared Standard (grades 6-8)

Red: Standard needs attention

Blue: Implementation Ideas (not currently used at grade level)

Purple: Activities currently used to support standard

Special Attention Needed

Realigned new standards to address gaps, misalignments, and developmental appropriateness

Energy

MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* [Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.] - could be 8th grade beginning or end of year engineering projects.)

Need to develop project based on thermodynamics-insulation boxes? - probes

MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. [Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.] (Moved from 8th grade)

Particles on the Move Station rotations

Created NGSS/MSS Aligned Curriculum for 6th, 7th, and 8th Grades

Currently piloting new NGSS/MSS Curriculum

6th Grade

ENGINEERING (ENGINEERING, TECHNOLOGY, AND APPLICATIONS OF SCIENCE)

Engineering Design

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Created NGSS/MSS Aligned Curriculum for 6th, 7th, and 8th Grades - Engineering

ENGINEERING DESIGN

Integrated Across the Units of Study at Each Grade level

MICHIGAN STATE NGSS SCIENCE STANDARDS		GRADE LEVEL		CONTENT			
		7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th	
MS-ETS1-1 Define the criteria and constraints of a design problem with sufficient precision to ensure a				Engineering,	Engineering,	Engineering,	
successful solution, taking into account relevant scientific principles and potential impacts on people	٧	٧	٧	Technology, and	Technology, and	Technology, and	
and the natural environment that may limit possible solutions.				Applications of Science	Applications of Science	Applications of Science	
MS-ETS1-2 Evaluate competing design solutions using a systematic process to determine how well they				Engineering,	Engineering,	Engineering,	
meet the criteria and constraints of the problem.	٧	٧	٧	Technology, and	Technology, and	Technology, and	
meet the criteria and constraints of the problem.				Applications of Science	Applications of Science	Applications of Science	
MS-ETS1-3 Analyze data from tests to determine similarities and differences among several design				Engineering,	Engineering,	Engineering,	
solutions to identify the best characteristics of each that can be combined into a new solution to better	٧	√	′ √	Technology, and	Technology, and	Technology, and	
meet the criteria for success.				Applications of Science	Applications of Science	Applications of Science	
MS-ETS1-4 Develop a model to generate data for iterative testing and modification of a proposed object,				Engineering,	Engineering,	Engineering,	
tool, or process such that an optimal design can be achieved.	٧	٧	٧	Technology, and	Technology, and	Technology, and	
toor, or process such that an optimal design can be achieved.				Applications of Science	Applications of Science	Applications of Science	

NGSS/MSS Aligned Curriculum 6th, 7th, and 8th Grades Physical Science

STRUCTURE AND PROPERTIES OF MATTER STRUCTURE AND PROPERTIES OF MATTER MS-P51-1 Develop models to describe the atomic composition of simple molecules and extended structures. V	PHYSICAL SCIENCE								
MS-P51-1 Develop models to describe the atomic composition of simple molecules and extended structures. WS-P51-3 (alther and make issues of information to describe that synthetic materials come from natural recovers and impacts society. WS-P51-3 Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when themal energy is added or removed. CHEMICAL REACTIONS WS-P51-3 Develop and use a model to describe how the total number of about some state of a pure substance when themal energy is added or removed. CHEMICAL REACTIONS WS-P51-3 Develop and use a model to describe how the total number of about some store to make in a chemical reaction and thus mass is conserved. WS-P51-4 Develop and use a model to describe how the total number of about some store to make in a chemical reaction and thus mass is conserved. WS-P51-5 Underside a design project to construct, test, and modify a device that either releases or absorbs themal energy by chemical processes. 6th 7th 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th Unit of Study - 7th Unit of Study - 8th Unit of Study - 7th Unit of Study - 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th Unit of Study - 7th Unit of Study - 8th Unit of Study - 8th Unit of Study - 7th Unit of Study - 8th Unit of Study - 7th Unit of Study - 8th Unit of Study - 7th Unit of Study - 8th Unit	MICHIGAN STATE NGSS SCIENCE STANDARDS	GRADE LEVEL		VEL	CONTENT				
MS-PS1-3 Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. MS-PS1-4 Develop a moded that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. MS-PS1-5 Analyze and interpret data on the properties of substances before and after the substances intered. MS-PS1-5 Analyze and interpret data on the properties of substances before and after the substances intered. MS-PS1-5 Analyze and interpret data on the properties of substances before and after the substances intered. MS-PS1-5 Analyze and interpret data on the properties of substances before and after the substances intered. MS-PS1-5 Analyze and interpret data on the properties of substances before and after the substances intered. MS-PS1-5 Analyze and interpret data on the properties of substances before and after the substances intered. MS-PS1-5 Analyze and interpret data on the properties of substances before and after the substances intered. MS-PS1-5 Analyze and interpret data on the properties of substances before and after the substances intered. MS-PS1-5 Analyze and interpret data on the properties of substances before and after the substances intered. MS-PS1-5 Analyze and interpret data on the properties of substances before and after the substances or absorbs the factors that after the substances or absorbs the member of substances or absorbs the factors that after the strength of electric and magnetic forces. MS-PS2-2 Plan an investigation to provide evidence that the change in an object substance when the contract and present arguments using evidence to support the claim that gravitational interactions and substances or absorbs the substances of the provide evidence that fields e	STRUCTURE AND PROPERTIES OF MATTER	6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
resources and impact society. V V Chemistry Pollution N=PS-12 Abselved para node that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. CHEMICAR REACTIONS 6th 7th 8th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th Unit of Study - 6th Unit of Study - 8th Unit of Study - 6th Unit of Study - 8th Unit of S	MS-PS1-1 Develop models to describe the atomic composition of simple molecules and extended structures.	٧			Chemistry				
MS-PS-14. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substances when thermal energy is added or removed. MS-PS-12. Availyze and interpret data on the properties of substances before and after the substances instead of the PS-PS-12. Availyze and interpret data on the properties of substances before and after the substances instead of the PS-PS-13. Chemical reaction and thus mass is conserved. MS-PS-13. Availyze and interpret data on the properties of substances before and after the substances instead of the PS-PS-13. Chandes a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes. MS-PS-PS-14. Option REACTIONS MS-PS-PS-14. Option REACTIONS MS-PS-PS-14. Develop and investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object, ects is conserved when there is no net force on the veytem. MS-PS-PS-12. Plan an investigation to provide evidence that the change in an object's motion depends on the system. MS-PS-PS-PS-PS-PS-PS-PS-PS-PS-PS-PS-PS-PS	·	٧	٧		Chemistry	Pollution			
CLEMICAL BEACTIONS Str. Unit of Study - 6th Unit of Study - 6th Unit of Study - 7th Unit of Study - 8th Unit of Study - 7th Unit of Study - 8th Chemistry		٧			Chemistry				
MS-PS1-5. Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. WS-PS1-6. Underside a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes. FORCES AND INTERACTIONS MS-PS1-1 Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.* MS-PS2-1 Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.* MS-PS2-3 has questions about data to determine the factors that affect the strength of electric and magnetic forces. MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. MS-PS2-4 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. MS-PS2-5 Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-1 Construct, use, and the change in the average kinetic energy of the particles as measured by the emperature of the sample. MS-PS3-3 Construct, use, and present arguments to support the claim that when the kinetic energy of an abject. MS-PS3-3 Lipsch the mass of an object to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. MS-PS3		6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
chemical reaction and thus mass is conserved. When SPS1-6. Undertake a design project to construct, test, and modify a device that either releases or absorbs the summal energy by chemical processes. FORCES AND INTERACTIONS 6th 7th 8th 0nk of Study - 6th Unit of Study - 7th Unit of Study - 7th Unit of Study - 8th Only Study -	MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interac	٧			Chemistry	·			
thermal energy by chemical processes. Y		٧			Chemistry				
MS-PS2-1 Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.* MS-PS2-1 Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.* MS-PS2-1 Apply Newton's Third Law to design a solution to a problem involving the motion depends on the sum of the forces on the object and the mass of the object. ects is conserved when there is no net force on the system. MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. MS-PS2-4 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. MS-PS2-5 Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. ENERGY MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object. MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. MS-PS3-3 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of maker, the mass of an object. MS-PS3-3. Possibly electric principles to design, construct, and test a device that either minimizes or maximize thermal energy transferred. MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of maker, the mass of an object. MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of the particles as measured by the temperature of the sample. MS-PS4-1 Use mathematical re	- · · · · · · · · · · · · · · · · · · ·	٧			Chemistry				
bejects.* MS-PS2-2 Plan an investigation to provide evidence that the change in an object's motion depends on the system. MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. MS-PS2-4 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. MS-PS2-5 Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects everting forces on each other even though the objects are not in contact. MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-3 Apply scientific principles to design, construct, and test a device that either minimizes or waximizes thermal energy transfer. MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of master, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of a wave is related to the energy in a wave. MS-PS4-1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. MS-PS4-1 Use mathematical	FORCES AND INTERACTIONS	6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
sum of the forces on the object and the mass of the object. exts is conserved when there is no net force on the system. MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. MS-PS2-4 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. MS-PS2-5 Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects severing forces on each other even though the objects are not in contact. MS-PS2-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-1 Construct and interpret graphical displays of data to describe that when the arrangement of objects interacting at a distance data a distance data of the speed of an object. MS-PS3-3 Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. MS-PS3-4 Distance the example. MS-PS3-4 Distance the example. MS-PS3-4 Distance the example. MS-PS3-5 Distance the example in the average kinetic energy of the particles as measured by the temperature of the sample. MS-PS3-5 Distance the example. MS-PS3-6 Distance the example in the average kinetic energy of the particles as measured by the temperature of the sample. MS-PS4-1 Distance the example in the average kinetic energy of the particle			٧			Forces and Motion			
MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. NS-PS2-4 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects. MS-PS2-5 Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. ENERGY Set 10	sum of the forces on the object and the mass of the object. ects is conserved when there is no net force on		٧			Forces and Motion			
interactions are attractive and depend on the masses of interacting objects. MS-PS2-S Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of temperature of the sample. MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. MS-PS3-6. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. MS-PS3-1. Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. MS-PS4-1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. MS-PS4-2 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals	MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic		٧			Forces and Motion			
between objects exerting forces on each other even though the objects are not in contact. ENERGY MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. WAVES AND ELECTROMAGNETIC RADIATION MS-PS4-1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. MS-PS4-2 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals V V Chemistry Chemistry Chemistry Chemistry Chemistry Forces and Motion Chemistry Chemistry Chemistry Chemistry Forces and Motion Chemistry Che			٧			Forces and Motion			
ENERGY MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. MAVES AND ELECTROMAGNETIC RADIATION MS-PS4-1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals			٧			Forces and Motion			
MS-PS3-1 Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. WAVES AND ELECTROMAGNETIC RADIATION MS-PS4-1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. MS-PS4-2 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals V V Chemistry Chemistry Chemistry Chemistry Forces and Motion Chemistry Forces and Motion Chemistry Chemistry Forces and Motion Chemistry Chemistry Chemistry Forces and Motion Chemistry Forces and Motion Chemistry Chemistry Chemistry Chemistry Chemistry Chemistry Chemistry Forces and Motion Waves and Energy To Chemistry Chemistry Chemistry Chemistry Chemistry Chemistry Chemistry Chemistry Chemistry Forces and Motion Waves and Motion To Chemistry Chemistry	, , , , , , , , , , , , , , , , , , , ,	6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
MS-PS3-2 Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. WAVES AND ELECTROMAGNETIC RADIATION MS-PS4-1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. MS-PS4-2 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals V V Chemistry Chemistry Chemistry Forces and Motion Chemistry Forces and Motion Chemistry Forces and Motion V V Chemistry Forces and Motion Waves and Energy Waves and Energy	, , , , ,	٧	٧		Chemistry	Forces and Motion	Í		
MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. MAVES AND ELECTROMAGNETIC RADIATION MS-PS4-1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. MS-PS4-2 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals V Chemistry Chemistry Chemistry Chemistry Forces and Motion Waves and Energy Forces and Motion Waves and Energy	· · · · · · · · · · · · · · · · · · ·	٧	٧		Chemistry	Forces and Motion			
MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. WAVES AND ELECTROMAGNETIC RADIATION MS-PS4-1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. MS-PS4-2 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals Waves and Energy Waves and Energy Waves and Energy Waves and Energy	11.1	٧			Chemistry				
object changes, energy is transferred to or from the object. WAVES AND ELECTROMAGNETIC RADIATION MS-PS4-1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. MS-PS4-2 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals V V Chemistry Forces and Motion Unit of Study - 7th Unit of Study - 8th Unit of Study - 6th V Waves and Energy	MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the	٧			Chemistry				
WAVES AND ELECTROMAGNETIC RADIATION MS-PS4-1 Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave. MS-PS4-2 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals		٧	٧		Chemistry	Forces and Motion			
amplitude of a wave is related to the energy in a wave. MS-PS4-2 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals Waves and Energy Waves and Energy Waves and Energy		6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
MS-PS4-2 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals Waves and Energy Waves and Energy	· · · · · · · · · · · · · · · · · · ·			٧			Waves and Energy		
MS-PS4-3 Integrate qualitative scientific and technical information to support the claim that digitized signals Waves and Energy	MS-PS4-2 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through			٧			Waves and Energy		
				٧			Waves and Energy		

NGSS/MSS Aligned Curriculum 6th, 7th, and 8th Grades Earth Science

EARTH SCIENCE								
MICHIGAN STATE NGSS SCIENCE STANDARDS	GRADE LEVEL			CONTENT				
SPACE SYSTEMS	6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
MS-ESS1-1 Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.	٧			Astronomy				
MS-ESS1-2 Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.	٧			Astronomy				
MS-ESS1-3 Analyze and interpret data to determine scale properties of objects in the solar system.	٧		٧	Astronomy		Geology		
HISTORY OF EARTH	6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
MS-ESS1-4 Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.			٧			Geology		
MS-ESS2-2 Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.			٧			Geology		
MS-ESS2-3 Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.			٧			Geology		
EARTH'S SYSTEMS	6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
MS-ESS2-1 Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. **			٧			Geology		
MS-ESS2-4 Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity. **		٧			Pollution			
MS-ESS3-1 Construct a scientific explanation based on evidence for how the uneven distributions of								
Earth's mineral, energy, and groundwater resources are the result of past and current geoscience		٧	٧		Pollution	Geology		
processes. **								
WEATHER AND CLIMATE	6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
MS-ESS2-5 Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.			٧			Weather and Climate		
MS-ESS2-5 MI Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions in Michigan due to the Great Lakes and regional			V			Weather and Climate		
geography.***			'			Treatmen and omnate		
MS-ESS2-6 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.			٧			Weather and Climate		
MS-ESS3-5 Ask questions to clarify evidence of the factors that have caused the rise in global								
temperatures over the past century.			۷			Weather and Climate		
HUMAN IMPACTS	6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
MS-ESS3-2 Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.			٧			Geology		
MS-ESS3-3 Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. * **		٧			Pollution			
MS-ESS3-4 Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.		٧			Pollution			

NGSS/MSS Aligned Curriculum 6th, 7th, and 8th Grades Life Science

LIFE SCIENCE								
MICHIGAN STATE NGSS SCIENCE STANDARDS	VEL	CONTENT						
STRUCTURE, FUNCTION AND INFORMATION PROCESSING	6th 7th 8th			Unit of Study - 6th Unit of Study - 7th		Unit of Study - 8th		
MS-LSI-1 Conduct an investigation to provide evidence that living things are made of cells; either one		7 (11	Otti	· ·	Onit of Study - 7th	Offic of Study - Oth		
cell or many different numbers and types of cells.	√			Cells and Body Systems				
MS-LS1-2 Develop and use a model to describe the function of a cell as a whole and ways parts of	,			a				
cells contribute to the function.	√			Cells and Body Systems				
MS-LS1-3 Use argument supported by evidence for how the body is a system of interacting	√			C-11 1 D- 1 Ct				
subsystems composed of groups of cells.	~			Cells and Body Systems				
MS-LS1-8 Gather and synthesize information that sensory receptors respond to stimuli by sending	√			Cells and Body Systems				
messages to the brain for immediate behavior or storage as memories.	·							
MATTER AND ENERGY IN ORGANISMS AND ECOSYSTEMS	6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
MS-LS1-6 Construct a scientific explanation based on evidence for the role of photosynthesis in the		V			Plants and Ecology			
cycling of matter and flow of energy into and out of organisms.		`			Tiants and Deology			
MS-LS1-7 Develop a model to describe how food is rearranged through chemical reactions forming		√			Plants and Ecology			
new molecules that support growth and/or release energy as this matter moves through an organism.		Ľ.			Tianio ana Deciosj			
MS-LS2-1 Analyze and interpret data to provide evidence for the effects of resource availability on		√			Plants and Ecology			
organisms and populations of organisms in an ecosystem. **		,						
MS-LS2-3 Develop a model to describe the cycling of matter and flow of energy among living and		√			Plants and Ecology			
nonliving parts of an ecosystem. **								
MS-LS2-4 Construct an argument supported by empirical evidence that changes to physical or		√			Plants and Ecology			
biological components of an ecosystem affect populations.	6th	746	OAL	Link of Children Cab	Hair of Charles 74h	Linia of Canada. Oak		
INTERDEPENDENT RELATIONSHIPS IN ECOSYSTEMS	btn	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
MS-LS2-2 Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. **		√			Plants and Ecology			
MS-LS2-5 Evaluate competing design solutions for maintaining biodiversity and ecosystem services. *		,						
**		√			Plants and Ecology			
GROWTH, DEVELOPMENT AND REPRODUCTION OF ORGANISMS	6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
MS-LS1-4 Use argument based on empirical evidence and scientific reasoning to support an								
explanation for how characteristic animal behaviors and specialized plant structures affect the		√			Natural Selection			
probability of successful reproduction of animals and plants respectively.								
MS-LS1-5 Construct a scientific explanation based on evidence for how environmental and genetic		V			Natural Selection			
factors influence the growth of organisms. **		Ľ.			Trutarar Serection			
MS-LS3-1 Develop and use a model to describe why structural changes to genes (mutations) located			,					
on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the			√			Heredity		
structure and function of the organism.								
MS-LS3-2 Develop and use a model to describe why asexual reproduction results in offspring with			V			Heredity		
identical genetic information and sexual reproduction results in offspring with genetic variation.						,		
MS-LS4-5 Gather and synthesize information about the technologies that have changed the way		√			Natural Selection			
humans influence the inheritance of desired traits in organisms.	Cab	746	OAL	Unit of Church Cab	Unit of Charles 74h	Unit of Cauda Oth		
NATURAL SELECTION AND ADAPTATION	6th	7th	8th	Unit of Study - 6th	Unit of Study - 7th	Unit of Study - 8th		
MS-LS4-1 Analyze and interpret data for patterns in the fossil record that document the existence,			V			Gaalami		
diversity, extinction, and change of life forms throughout the history of life on Earth under the			٧			Geology		
assumption that natural laws operate today as in the past. **								
MS-LS4-2 Apply scientific ideas to construct an explanation for the anatomical similarities and		V			Natural Selection			
differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships		١ ،			Natural Sciection			
relationships								
MS-LS4-3 Analyze displays of pictorial data to compare patterns of similarities in the embryological		√			Natural Selection			
development across multiple species to identify relationships not evident in the fully formed anatomy.		'			ratural selection			
MS-LS4-4 Construct an explanation based on evidence that describes how genetic variations of traits								
in a population increase some individuals' probability of surviving and reproducing in a specific		√			Natural Selection			
environment.		,						
MS-LS4-6 Use mathematical representations to support explanations of how natural selection may		,						
lead to increases and decreases of specific traits in populations over time.		√			Natural Selection			
read to mereages and decreases of specific datis in populations over time.		_						

Middle School Science Materials and Resources

2017-2018 - Research and assessment of materials and resources:

- Discovery Science Techbook
- Frey Scientific CPO Science
- SEPUP Middle School Core Curriculum
- Bring Science Alive! TCI Science
- Amplify Science
- HMH Science Dimensions
- FOSS Delta Education

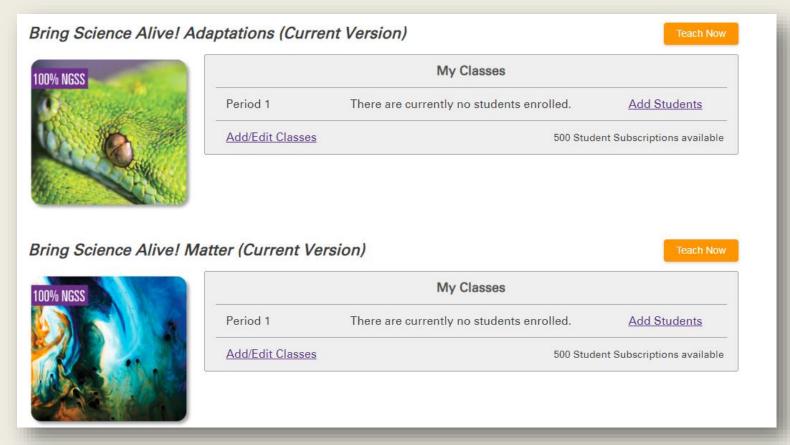
- STC Program Science and Technology Concepts by Caroline Biological Supply/ Smithsonian Science Education Ambitious Science Teaching
- Next Gen and NSTA ngss@ntsa.org
- TeachEngineering.org
- Science Talking: Supporting the Practices through Classroom Discourse (NE Georgia RESA)

2017-2018 - Met with TCI Representative - Science Implementation Team

Middle School Science Materials and Resources

- **2018-2019** Professional Development experience with Middle School Science Teachers to explore/research Mi-STAR Curriculum
- 2018-2019 Met with TCI representative with Science Department for pilot training
- 2018-2019 Two MS teachers attending NGSX Training at KISD
- 2018-2019 Narrowed down and researched pros and cons of top five resources:
 - IQWST by Activate Learning
 - Project-based Inquiry Science (PBIscience) by Activate Learning
 - •Mi-STAR
 - TCI Bring Science Alive (teacher access only)
 - •TCI Bring Science Alive (teacher access and student accounts)

Middle School Science Materials and Resources Evaluation of Top Five Options


- ✓ TCI Bring Science Alive (2 options)
 - TCI Bring Science Alive (teacher access only)
 - TCI Bring Science Alive (teacher access and student accounts)
- **✓ IQWST**
- √ PBIscience
- √ Mi-Star

Criteria Used for Evaluation of Resources

- NGSS Aligned Phenomena driven; Inquiry-based; Engineering Design Integrated
- Assessment and Data Analysis Capacity
- Technology Integration with Google Suite/Google Classroom
- Flexible and Adaptable to EGRMS Curriculum Scope and Sequence
- Resource Related Professional Development

Middle School Science Materials and Resources

2018-2019 - Currently Piloting TCI materials and resources with NGSS/MSS

Materials and Resources Recommendation: TCI with Teacher Access and Student Accounts

Unit 1

Anchoring Phenomenon - The History of Life on Earth

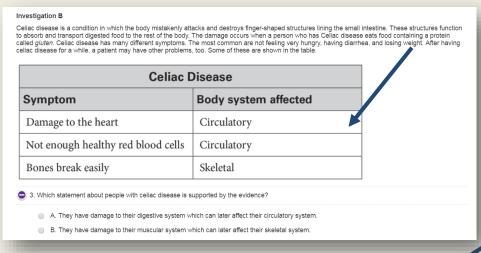
Phenomenon: Similar fossils have been found in the same aged rock in fossil digs that are over 100 miles apart.

Storyline: As a paleontologist, students will collect data from one of six fossil sites around the world. They will analyze the data and find patterns between different fossil sites to form a more comprehensive view of the history of life on Earth.

1 Earth's History

Phenomenon: You would usually find shells by the ocean, but fossilized shells can be found in the middle of the desert.

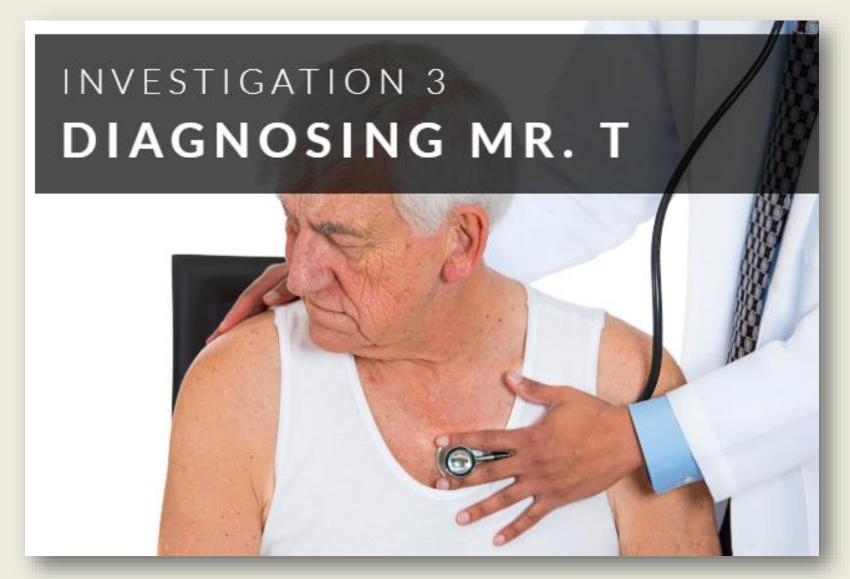
Description: Students will learn about rock strata and how fossils are formed and found within the rock strata. They will analyze data and construct explanations for patterns found in the fossil record


Performance Expectations: MS-ESS1-4

3D Learning:

Science and Engineering Practices Crosscutting Concepts Disciplinary Core Ideas

Why is TCI the best option for the East Grand Rapids Middle School Science Program and Teachers?


- NGSS/MSS-aligned curriculum
- Assessment questions aligned with M-Step and are process and application based

 Student assessment data can be analyzed by questions/concepts, giving reteaching opportunities

Notebook	Lesson Game	Assessment	Participation Participation
Ass	sign	02-07-2019	
5 🕜	21	20	5
	View Trends Clear All	View Trends Clear All	
View/Grade	-	16	View/Grade
View/Grade	-	20	View/Grade
View/Grade	-	15	View/Grade
View/Grade	-	17	View/Grade
View/Grade	-	14	View/Grade
View/Grade	-	8	View/Grade
) Garrison da	40.5	22) family Consider

TCI Snapshot: Investigation 3 Diagnosing Mr. T

Why is TCI the best option for the East Grand Rapids Middle School Science Program and Teachers?

- All units are introduced using a phenomenon or overarching theme that ties the unit together
- Videos, visuals, model-eliciting, and online activities are real-life based
- Teachers can pick and choose from a wide variety of resources available that are still NGSS aligned
- Program continues to be developed with updates (For example: 2019 - Google Classroom compatible)
- Very detailed, organized, comprehensive instruction easy for new teachers to pick up and follow curriculum easily

Why is TCI the best option for the East Grand Rapids Middle School Science Student?

- Many opportunities available for students to become invested in scientific understanding of real world connections
- The online journal and textbook allows students access from any computer in any location
- Built-in accommodations for learning needs such as audio and visual supports and reading level adjustments with textbook and assessments
- Comprehension checks are built-in for students, so they can self-monitor their understanding
- Engineering performance-based activities built into units

Budget for Middle School Recommendation

TCI Bring Science Alive Student and Teacher Subscriptions

Description	Quantity	Cost Each	Total Cost
All Life Science: Adaptations	250	\$25.00	\$6,250.00
Life Science: Cells and Genetics	250	\$25.00	\$6,250.00
Life Science: Ecosystems	250	\$25.00	\$6,250.00
Physical Science: Forces and Energy	250	\$25.00	\$6,250.00
Physical Science: Matter	250	\$25.00	\$6,250.00
Physical Science: Planet Earth	250	\$25.00	\$6,250.00
Earth Science: Space	250	\$25.00	\$6,250.00
Earth Science: Waves	250	\$25.00	\$6,250.00
Earth Science: Weather and Climate	250	\$25.00	\$6,250.00
Seven (7) Teacher Accounts	7	No Charge	\$0.00
Half-Day PD and Webinars	-	No Charge	\$0.00
		TOTAL	\$56,250.00 over 6 years (\$9,375.00 per year)

Budget for Middle School Recommendation

One-time Purchase of Materials

Resource	Vendor	Quantity	Cost Each	Total Cost
Molecule Building Set	Amazon	20	\$21.97	\$439.40
Human Body Tissue Prepared Slides	Amazon	2	\$129.00	\$258.00
Fan (20")	Amazon	2	\$39.95	\$79.90
Digital Timers (set of 10)	Amazon	3	\$13.99	\$41.97
Storage Containers for 18 qt. (for kits)	Amazon	5	\$42.88	\$214.40
Storage Containers for 30 qt. (for kits)	Amazon	5	\$53.99	\$269.95
Digital Scales	Amazon	8	\$124.99	\$999.92
Alcohol Thermometer	Carolina Biological	30	\$5.95	\$178.50
Mini Mag Flashlights	Amazon	15	\$11.56	\$173.40
			TOTAL	\$2,655.44

Questions for Middle School

High School Science Recommendations for Approval

Heather Carlson

Matt Harold

Bill Trapp

Purpose for Revisions

- Add flexibility to IB Diploma Programme
 - Implement IB Chemistry Standard Level (SL) Course (One-year vs. two-year IB course)
- Adapt and align curriculum to newly released standards
 - Michigan Science Standards reflecting the Next Generation Science Standards (NGSS)
- More effectively meet student needs
 - Sequencing of pathways to ensure students are not out of sequence
 - Chemistry before biology due to MI/NGSS changes in Biology
 - Increase opportunities for all students to take three (3) core science courses over four (4) years (Physics, Chemistry, and Biology)

High School Items for BOE Review and Approval

- Revised Science Curriculum
 - Due to NGSS/MI Science Standards Integration
- Two New Science Courses
 - Integrated Physics and Chemistry (IPC)
 - IB Chemistry Standard Level (SL)
- Curriculum Changes to Chemistry Honors Course
 - Integration of content to prepare student for AP Chemistry and/or IB Chemistry
 - Name change of "Chemistry Honors" to "EGR Pre-AP/IB Chemistry"
- Revised Science Course Graduation Pathways
 - Move Biology to a junior year course
 - Create new instructional sequence of: Physics, Chemistry, Biology, and Science Elective of four (4) years
- Purchase of Support Materials and Resources

NGSS High School Course Integration

- Update/Replace Current Science Labs with more Engineering-based activities
- Embedded Earth Science Standards into Core Science Curriculum
 - Physics/Physics Honors, Chemistry/Chemistry Honors,
 Biology/Biology Honors, Integrated Physics and Chemistry (IPC)
- Developed New STEM Activities for All Levels of Science

NGSS High School Integration – Earth Science

EARTH SCIENCE								
MICHIGAN STATE NGSS SCIENCE STANDARDS GRHS COURS UNIT OF STUDY								
SPACE SYSTEMS	_			ВІ	IPC	Physics	Chemstry	Biology
HS-ESS1-1 Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation.	٧	٧			•Astrophysics	•Astrophysics	Nuclear Chemistry and Electron Behavior	
HS-ESS1-2 Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.	٧	٧			•Astrophysics	•Astrophysics		
HS-ESS1-3 Communicate scientific ideas about the way stars, over their life cycle, produce elements.	٧	٧	٧		Atomic Theory and Periodic Table of Elements Astrophysics	•Astrophysics	 Atomic Theory and Periodic Table of Elements Nuclear Chemistry and Electron Behavior 	
HS-ESS1-4 Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.	٧	٧			•Astrophysics	Circular Motion Astrophysics		
HISTORY OF EARTH	IPC	PH	СН	BI	IPC	Physics	Chemstry	Biology
HS-ESS1-5 Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.	٧	٧			•Geophysics	•Geophysics		
HS-ESS1-6 Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history.	٧	٧			Astrophysics Geophysics	•Astrophysics •Geophysics		
HS-ESS2-1 Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.	٧	٧			Geophysics	Geophysics		
EARTH'S SYSTEMS	IPC	PH	СН	BI	IPC	Physics	Chemstry	Biology
HS-ESS2-2 Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.			٧				•Environmental Chemistry	
HS-ESS2-3 Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection. HS-ESS2-5 Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. **	٧	٧			Geophysics	Geophysics		
HS-ESS2-5 Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. **			٧				•Environmental Chemistry	
HS-ESS2-6 Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.				٧				•Ecology
HS-ESS2-7 Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth.				٧				•Evolution
WEATHER AND CLIMATE	IPC	PH	СН	BI	IPC	Physics	Chemstry	Biology
HS-ESS2-4 Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.	٧	٧	٧		Geophysics	Meteorology and Thermal Physics	•Energetics	
HS-ESS3-5 Analyze geoscience data and the results from global climate models to make an evidence- based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems. **	٧	٧	٧		•Geophysics	Meteorology and Thermal Physics	•Environmental Chemistry	
HUMAN SUSTAINABILITY	IPC	PH	СН	BI	IPC	Physics	Chemstry	Biology
HS-ESS3-1 Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.	٧	٧			•Geophysics	Geophysics	•	
HS-ESS3-2 Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. * **	٧	٧	٧		Nuclear Chemistry	Nuclear Chemistry	•Energetics	
HS-ESS3-3 Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity. **				٧				•Ecology
HS-ESS3-4 Evaluate or refine a technological solution that reduces impacts of human activities on natural systems. *	٧	٧			Nuclear Chemistry	Nuclear Chemistry		
HS-ESS3-6 Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.			٧				•Environmental Chemistry	

A Look at the Current H.S. Science Program

CURRENT SCIENCE PATHWAYS

STANDARD	9th	10th	11th	12th
Prerequisite:	Physics or	Biology or	Chemistry or	Science Elective or No Course AP Physics AP Biology Forensics/Genetics Anatomy/Physiology Adv. Projects Engineering Environmental Science
Algebra	Physics Honors	Biology Honors	Chemistry Honors	
Prerequisite:	Biology or	Physics or	Chemistry or	Science Elective or No Course AP Physics AP Biology Forensics/Genetics Anatomy/Physiology Adv. Projects Engineering Environmental Science
None	Biology Honors	Physics Honors	Chemistry Honors	

IB	9th	10th	11th	12th
No Chemistry	Physics or	Biology or	IB Physics SL/HL A	IB Physics SL/HL B
	Physics Honors	Biology Honors	IB Biology HL A	IB Biology HL B
No Chemistry	Biology or	Physics or	IB Physics SL/HL A	IB Physics SL/HL B
	Biology Honors	Physics Honors	IB Biology HL A	IB Biology HL B
No Pre-Bio	Physics or Physics Honors	Chemistry or Chemistry Honors	IB Biology HL A	IB Biology HL A
No Pre-Phys.	Biology or	Chemistry or	IB Physics SL/HL A	IB Physics SL/HL A
	Biology Honors	Chemistry Honors	IB Biology HL A	IB Biology HL A
Double Up in 10th Chem and Bio	Physics or Physics Honors	Chemistry or Chemistry Honorsand Biology or Biology Honors	IB Biology HL A	IB Biology HL A
Double Up in 10th	Biology or	Chemistry or Chemistry Honorsand Physics or Physics Honors	IB Physics SL/HL A	IB Physics SL/HL A
Chem and Phys	Biology Honors		IB Biology HL A	IB Biology HL A

New Pathways

- Integrating the new courses into the pathways
 - IB Chemistry SL and Integrated Physics and Chemistry
- Switching Chemistry to sophomore year in the sequence
- Allows all students a pathway to take all three core sciences at a level they can have success while keeping/adding flexibility and fourth-year elective science courses

	9th	10th	11th	12th
Path for students enrolled in Algebra in 9th grade	Intergrated Physics and Chemistry (IPC)	Chemistry	Biology	Science Elective
Path for student enrolled in a math course beyond Algebra in the 9th grade	Physics Physics Honors	Chemistry Pre-AP/IB Chemistry Honors	Biology Biology Honors AP Biology	Science Elective
Path for students who enroll in the	Physics Physics Honors	Chemistry Pre-AP/IB Chemistry Honors	IB Chemistry SL	Biology Biology Honors AP Biology
IB Diploma Programme	Physics Physics Honors	Chemistry Pre-AP/IB Chemistry Honors	IB Biology HL A	IB Biology HL B

Graduation Requirement for Science

- 1.0 credits in Biology
- 1.0 credits in Physics or Chemistry
- 1.0 credits in any Science
- 3.0 total science credits required

Science Electives

Advance Projects in Engineering

Anatomy and Physiology

Forensics and Genetics

Environmental Science

AP Biology

AP Chemistry

AP Physics

IB Chemistry SL

Science Course Changes

- Addition of an Integrated Physics and Chemistry Course
 - Adds a lower level Algebra reduced Physics course to keep all 9th graders in the same sequence
- Addition of an IB Chemistry Standard Level (SL) Course and Elimination of IB Physics SL/HL
 - IB Chemistry SL is a one-year course
 - Replaces a two-year IB course for a one-year course Increases flexibility
 - IB Diploma Programme cannot sustain all three core science courses with its current numbers
 - IB Biology Higher Level (HL), a two-year course, will remain an offering
 - Most flexibility with IB Chemistry SL and IB Biology HL
 - One-year course option and a two-year course option
 - One standard level option and one higher level option

Proposed New Course: Integrated Chemistry and Physics

- Introductory course to investigate the basic principles of Physics and Chemistry
- For students who need a less mathematical and more hands-on approach to the physical sciences For 9th grade students enrolled in Algebra
- Emphasis on developing conceptual understanding of Physics and Chemistry through means of physical and computer modeling
- Develops scientific measurement techniques and problem solving skills with the use of basic mathematical calculations and limited use of Algebra

Proposed New Course: Integrated Chemistry and Physics

Unit Topic	Unit Description	Engineering and Labs	MSS/NGSS Standards
Measurement and All	This unit discusses basic issues in measurement, including the metric	Length measurement methods and associated	HS-PS2-4
Motion	system and uncertainty. It introduces and refines types of motion	tools (paces,tape measure,meter stick, ruler,	
	including linear and circular motions. It refines concepts of velocity and		
	acceleration.	Motion Sensor Lab	
		Centripetal Force Lab	
Forces	Basic introduction to Newton's laws and applications. Includes	3rd Law balloon rockets	HS-PS2-1
	calculations of weight and discussion of inertial reference frames.		
Energy and Momentum	This unit introduces the conservation of linear momentum and the	Car Crash Project	HS-PS2-2
	impulse momentum theorem. Applications include collisions.	HS-PS-2-3 (could do egg drop challenge i.e. build	HS-PS2-3
		an egg catcher Windmill/Rubber band Car/	HS-PS3-1
		Machine Project)	HS-PS3-2
			HS-PS3-3
Electricity and Magnetism	Introduction to topics in electricity and magnetism including; static	Electronic Circuits Design Kits	HS-PS2-4
	electricity, electrical magnetic force, electric current, voltage, and	End of unit project Build a Simple Motor Lab	HS-PS2-5
	resistance. Analysis of electric circuits and devices will include Ohm's		HS-PS3-5
	Law calculations. This study will include analysis of electrical		
	technology that utilize electrify and magnetic forces.		
Waves	Mathematical representations of frequency, wavelength and wave speed.	Dangers of Radiation Project	HS-PS4-1
	Transfer and storage of information. Interactions between waves and		HS-PS4-2
	matter. EM radiation and wave particle duality.		HS-PS4-3
			LIC DC4 4
	In this unit, students investigate the atom, beginning with the	Modeling matter lab box prediction, Bean bag	HS-PS1-1
Table of Elements	development of atomic theory. They learn about charges, the effects of	isotope lab, Matter lab	HS-PS3-5
	these charges, and properties of elements. These properties are related to		HS-ESS1-3
	the Periodic Table of Elements and students use the Periodic Table to		
	make predictions about the properties of elements based on location on		
	the periodic table.		
Electron Behavior	Students will predict the relative properties of elements based on the	Flame test lab, periodic trends lab, Colorimetry	HS-PS1-1
	patterns of electrons in the outermost energy level of atoms. Students	lab	HS-PS1-8
	will explore periodic trends.		
Bonding, Formulae,	In this unit, students investigate the different ways atoms bond with	Types of Reaction Lab	HS-PS1-1
Nomenclature and	other atoms. This includes the study of ionic and molecular compounds		HS-PS1-2
Chemical Reactions	along with metallic and covalent network structures. Students will		HS-PS1-3
	mathematical representations to support the claim that atoms, and		HS-PS2-6
	therefore mass, are conserved during a chemical reaction.		HS-PS1-7
Astrophysics	Topics include cosmology and the life cycle of stars. Examples include	Space research project exoplanets	HS-PS2-4
	the big bang, light spectra, distant galaxies, composition of objects in the		HS-ESS1-1
	universe.		HS-ESS1-2
			HS-ESS1-3
			HS-ESS1-4
			HS-ESS1-6
Geophysics	Introduction to topics in physical geology. Internal and surface	Thermal Lab/Solar Earth Cooker Newton's Law of	HS-ESS1-5
	processes, thermal convection of matter, carbon cycling and effects,	Cooling	HS-ESS1-6
	water and its geological effects.		HS-ESS2-1
	Climate and weather, convection, heat transfer, 2nd law of		HS-ESS2-3
	thermodynamics, greenhouse effect.		HS-ESS2-4
			HS-ES3-1
			HS-ESS3-5
			HS-PS3-4
Nuclear Chemistry	In this unit, students look closely at the nucleus, the different ways it can	Skittle half-life simulation lab Energy Project	HS-PS1-8
	change, and the results of those changes. This understanding is then		HS-ESS3-2
	applied to natural phenomena like radioactive dating and the		HS-ESS3-4
	composition of stars.		1

Proposed New Course: IB Chemistry Standard Level (SL)

- One-year IB Course for juniors or seniors
- Combines academic study with the acquisition of practical and investigational skills through the experimental approach
- Students examine the chemical principles that form the basis of physical and biological systems through the core content
- Students develop skills designing experiments, analyzing data, and drawing conclusions from experimental data
- Integrates IB Approaches to Teaching and Learning

IB Chemistry Standard Level (SL) - IB Subject Brief

International Baccalaureate Diploma Programme Subject Brief

Sciences:

Chemistry—Standard level

First assessments 2016 - Last assessments 2022

The IB Diploma Programme (DP) is a rigorous, academically challenging and balanced programme of education designed to prepare students aged 16 to 19 for success at university and life beyond. The DP aims to encourage students to be knowledgeable, inquiring, caring and compassionate, and to develop intercultural understanding, open-mindedness and the attitudes necessary to respect and evaluate a range of viewpoints. Approaches to teaching and learning (ATI) within the DP are deliberate strategies, skills and attitudes that permeate the teaching and learning environment. In the DP students develop skills from five ATI. categories: thinking, research, social, self-management and communication.

To ensure both breadth and depth of knowledge and understanding, students must choose at least one subject from five groups: 1) their best language, 2) additional language(s), 3) social sciences, 40, experimental sciences, and 5) mathematics. Students may choose either an arts subject from group 6, or a second subject from groups 1 to 5. At least three and not more than four subjects are taken at higher level (240 recommended teaching hours). While the remaining are taken at standard level (150 recommended teaching hours). In addition, three core elements—the extended essay, theory of knowledge and creativity, action, service—
are compulsory and central to the philosophy of the programme.

These IB DP subject briefs illustrate four key course components.

I. Course description and aims

II. Curriculum model overview

I. Course description and aims

Chemistry is an experimental science that combines academic study with the acquisition of practical and investigational skills. Chemical principles underpin both the physical environment in which we like and all biological systems. Chemistry is often a prerequisite for many other courses in higher education, such as medicine, biological science and environmental science.

Both theory and practical work should be undertaken by all students as they complement one another naturally, both in school and in the wider scientific community. The DP chemistry course allows students to develop a wide range of practical skills and to increase facility in the use of mathematics. It also allows students to develop interpersonal and information technology skills, which are essential to life in the 21st century.

By studying chemistry students should become aware of how scientists work and communicate with each other. While the scientific method may take on a wide variety of forms, it is the emphasis on a practical approach through experimental work that characterizes the subject. Teachers provide students with opportunities to develop manipulative skills, design investigations, collect data, analyse results and evaluate and communicate their findings.

Through the overarching theme of the nature of science, the aims of the DP chemistry course are to enable students to:

- appreciate scientific study and creativity within a global context through stimulating and challenging opportunities
- acquire a body of knowledge, methods and techniques that characterize science and technology
- apply and use a body of knowledge, methods and techniques that characterize science and technology

III. Assessment model
IV. Sample questions

- develop an ability to analyse, evaluate and synthesize scientific information
- develop a critical awareness of the need for, and the value of, effective collaboration and communication during scientific activities
- develop experimental and investigative scientific skills including the use of current technologies
- develop and apply 21st century communication skills in the study of science
- become critically aware, as global citizens, of the ethical implications of using science and technology
- develop an appreciation of the possibilities and limitations of science and technology
- develop an understanding of the relationships between scientific disciplines and their influence on other areas of knowledge.

II. Curriculum model overview

Component	Recommended teaching hours
Core	95
Stoichiometric relationships	13.5
Atomic structure	6
3. Periodicity	6
Chemical bonding and structure	13.5
5. Energetics/thermochemistry	9
6. Chemical kinetics	7
7. Equilibrium	4.5
8. Acids and bases	6.5
9. Redox processes	8
10.Organic chemistry	11
11.Measurement and data processing	10

Option (choice of one out of four)	15
A. Materials	15
B. Biochemistry	15
C. Energy	15
D. Medicinal chemistry	15
Practical scheme of work	40
Prescribed and other practical activities	20
Individual investigation	10
(internally assessed)	
Group 4 project	10

The group 4 project

The group 4 project is a collaborative activity where students from different group 4 subjects, within or between schools, work together. It allows for concepts and perceptions from across disciplines to be shared while appreciating the environmental, social and ethical implications of science and technology. It can be practically or theoretically based and aims to develop an understanding of the relationships between scientific disciplines and their influence on other areas of knowledge. The emphasis is on interdisciplinary cooperation and the scientific processes.

III. Assessment model

It is the intention of this course that students are able to fulfill the following assessment objectives:

- 1. Demonstrate knowledge and understanding of:
- · facts, concepts, and terminology
- methodologies and techniques
 communicating scientific information.
- 2 Apply:
- facts, concepts, and terminology
- methodologies and techniques
- · methods of communicating scientific information.
- 3. Formulate, analyse and evaluate:
- · hypotheses, research questions and predictions
- · methodologies and techniques
- primary and secondary data
- scientific explanations.
- Demonstrate the appropriate research, experimental, and personal skills necessary to carry out insightful and ethical investigations.

Assessment at a glance

Type of assessment	Format of assessment	Time (hours)	Weighting of final grade (%)
External		3	80
Paper 1	30 multiple-choice questions (Core)	0.75	20
Paper 2	Short answer and extended response questions (Core)	1.25	40
Paper 3	Data- and practical-based questions, plus short answer and extended response questions on the option	1	20
Internal		10	20
Individual investigation	Investigation and write-up of 6 to 12 pages	10	20

IV. Sample questions

- . What is the total number of atoms in 0.50 mol of
- 1,4-diaminobenzene, H,NC,H,NH,?
- A. 16.0 x 10²³
- B. 48.0 x 10²³ C. 96.0 x 10²³
- D 1920 x 10²³

(Avogadro's constant (L or N_A) = 6.0×10^{13} mol⁻¹.) (Paper 1)

- Many automobile manufacturers are developing vehicles that use hydrogen as a fuel.
- Suggest why such vehicles are considered to cause less harm to the environment than those with internal combustion engines.
- Hydrogen can be produced from the reaction of coke with steam: C(s)+2H,O(g)→2H,(g)+CO,(g)

Using information from section 12 of the data booklet, calculate the change in enthalpy, ΔH , in kJ mol⁻¹, for this reaction. (Paper 2)

About the IB: For over 40 years the IB has built a reputation for high-quality, challenging programmes of education that develop internationally minded young people who are well prepared for the challenges of life in the 21st century and able to contribute to creating a better, more peaceful world.

For further information on the IB Diploma Programme, and a complete list of DP subject briefs, visit: http://www.ibo.org/diploma/.

Complete subject guides can be accessed through the IB online curriculum centre (OCC) or purchased through the IB store: http://store.ibo.org.

For more on how the DP prepares students for success at university, visit: www.ibo.org/recognition or email: recognition@ibo.org.

COURSE REVISION: Chemistry Honors to EGR Pre-AP/IB Chemistry

- Faster paced and more rigorous compared to the previous Honors Chemistry course
- Will better prepare students for college level courses such as AP Chemistry and IB Chemistry

Unit Topic	Unit Description	Engineering and Labs	MSS/NGSS Standards
Atomic Theory &	In this unit, students investigate the atom, beginning with the	Modeling matter lab activities, Bean bag	HS-PS1-1
Periodic Table of	development of atomic theory. They learn about charges, the	isotope lab, Matter lab	HS-PS3-5
Element	effects of these charges, and properties of elements. These	N. 1500 MARCH W. A. W. 1500 M.	HS-ESS1-3
	properties are related to the Periodic Table of Elements and		
	students use the Periodic Table to make predictions about the		
	properties of elements based on location on the periodic table.		
Nuclear Chemistry and	In this unit, students look closely at the nucleus, the different ways	Flame test lab, periodic trends lab,	HS-ESS1-1
Electron Behavior	it can change, and the results of those changes. This understanding	colorimetry lab, Van Andel stars project,	HS-ESS1-3
	is then applied to natural phenomena like radioactive dating and	Nuclear Project	HS,PS1-1
	the composition of stars. Students will also predict the relative		HS-PS1-8
	properties of elements based on the patterns of electrons in the		
	outermost energy level of atoms. Students will explore periodic		
Bonding, Formulae,	In this unit, students investigate the different ways atoms bond	Design a rocket fuel delivery system to	HS-PS1-1
Nomenclature and	with other atoms. This includes the study of ionic and molecular	launch a pipet rocket, types of chemical	HS-PS1-2
Chemical Reactions	compounds along with metallic and covalent network structures.	reactions, Conservation of matter lab,	HS-PS1-3
	Students will mathematical representations to support the claim	lonic vs covalent substance property	HS-PS2-6
	that atoms, and therefore mass, are conserved during a chemical	lab	HS-PS1-7
Moles and	In this unit, students investigate the mathematical relationship	Design an airbag engineering project,	HS-PS1-2
Stoichiometry	between reactants and products in chemical reactions. This	Empirical formula lab, Nail lab, Limiting	HS-PS1-7
	investigation includes using patterns in familiar reactions to predict	Reactants Lab	
	other reactions as well as using mathematical modeling to make		
	predictions about quantities.		
Intermolecular Forces	In this unit, students will investigate and model the different	IMF Lab, Stem IMF lab, Gas laws inquiry	HS-PS1-3
and Gas Laws	intermolecular forces as well as the properties that can be	lab, Collection of butane over water	HS-PS3-2
	attributed to these forces. They will relate molecular geometry to		
	properties. Students will investigate the kinetic theory, particularly		
	with the behavior of gases. When studying gases, they investigate		
	the relationship between the pressure, temperature, and volume of		
	a gas and the consequences when any of those factors are		
Chemical Equilibrium	In this unit, students continue their investigation of chemical	Rate of reaction lab, Acids and bases,	HS-PS1-5
and Aqueous Chemistry	reactions, beginning with a study of factors affecting the rate of	Titration, Le Chatelier's Lab	HS-PS1-6
	reaction. They are introduced to the idea of reversible reactions, the		HS-PS1-7
	concept of equilibrium, and work with Le Chatelier's principle.		
	Finally, students investigate acids and bases in society.		
Energetics	In this unit, students investigate the energy in chemical reactions.	Candle lab, Burning of a nut, Unknown	HS-PS3-1
	They learn about endo and exothermic reactions, calorimetry, and	metal lab	HS-PS3-2
	the effects of energy changes on Earth's systems		HS-PS3-4
			HS-PS1-4
			HS-ESS2-4
			HS-ESS3-2
Environmental	In this unit, students apply their understanding of chemistry to		HS-ESS2-2
Chemistry	Earth systems. Particularly, they investigate the role of chemistry in		HS-ESS2-5
	climate change. Included in their study is an investigation into		HS-ESS3-5
	possible solutions for human impacts on the environment.		HS-ESS3-6

Budget for High School Recommendation

Additional Needs for New Courses and Developing NGSS/STEM Labs/Experiments

Course(s)	Material Description	Source	Quantity	Total Cost
All Physics	Software Physics of Sports	www.physicscurriculum.com/physic sofsports	Unlimited Site License (perpetual)	\$890.00
Chemistry/Biology All	Electronic pH Meters	www.flinnsci.com/flinn- phmeter/ap8673/	18 (\$50 each)	\$900.00
AP Chemistry	Lifetime Subscription to Adrian Dingle's AP Resources	www.adriandingleschemistrypages. com/subscriber-materials/	1	\$499.00
Environmental Science/All Physics	Anemometers	www.amazon.com/HP-866B- Anemometer-Measuring- Temperature-Backlight/	16 (\$25 each)	\$400.00
All Physics	Pasco Bluetooth Probe Adapters (replaces 7-year- old computer interface)	www.pasco.com/prodCatalog/PS/P S-3200_airlink/index.cfm	18 (\$60 each)	\$1,080.00
AP/IB Chemistry	Le Chats Lab Kits	www.flinnsci.com/applications-of- lechateliers-principle-advanced- inquiry-laboratory-kit/ap7659/	2 (\$100 each)	\$200.00
EGR Pre-AP/IB Chemistry	Kinetics Lab Kits	www.flinnsci.com/kinetics-of- crystal-violet-fadingadvanced- inquiry-laboratory- kit/ap7644/#variantresources	2 (\$50 each)	\$100.00
All Chemistry Levels	Electronic Balances	www.scalesoutlet.com	7 (\$340 each)	\$2,380.00
Biology All Levels, Forensics/Anatomy and Physiology	5-7 Year Maintenance Microscopes	www.associatedmicroscope.com/s ervices.aspx	32 (\$25 each)	\$800.00
			TOTAL	\$7,249.00

Questions for High School

Summary – Seeking BOE Approval For:

- 1. Secondary (6-12) Science Curriculum based on the Michigan Science Standards/Next Generation Science Standards
- 2. Purchase of MS Resource: TCI Bring Science Alive for both Students and Teachers
 - Approval for \$56,250 over six years (\$9,375 per year for six years)
 - Approval for one-time purchase for materials of \$2,655.44
- 3. Purchasing Materials and Resources to Support Changes to EGR High School Science Curriculum
 - Approval for one-time purchase for materials of \$7,249
- 4. Two New High School Science Courses
 - Integrated Physics and Chemistry
 - IB Chemistry Standard Level
- 5. Revised Curriculum and Name Change for Chemistry Honors Course to EGR Pre-AP/IB Chemistry
- 6. Approval of New Pathways for High School Science

Our Mission

Educating and inspiring each student to navigate successfully in a global community

BOARD ENCLOSURE March 18, 2019 Item No. 6

EAST GRAND RAPIDS PUBLIC SCHOOLS

Kent County, Michigan

REGULAR MEETING of the East Grand Rapids Board of Education

The James E. Morse Administration Center at Woodcliff 2915 Hall Street SE, East Grand Rapids, MI 49506

Monday, February 25, 2019

MINUTES

The **REGULAR MEETING** of the East Grand Rapids Public Schools Board of Education, Kent County, Michigan, was held on Monday, February 25, 2019, in the Community Board Room at the James E. Morse Administration Center, 2915 Hall Street SE, Grand Rapids, MI 49506.

BOARD OF EDUCATION

Present: Natalie Bernecker, Elizabeth Welch, Beth Milanowski, Brad Laackman, Mark Hessler, Mike Reid, Janice Yates

Absent:

Administration: Dr. Heidi Kattula, Kevin Philipps, Jenny Fee, Doug Jenkins, Craig Weigel, Steve Wojciechowski, Lori Johnston,

Tim Johnston, Anthony Morey, Shelly Schram, Carlye Allen, Caroline Breault-Cannon

Meeting Called to Order

President Bernecker called the meeting to order at 6:00 p.m.

Acknowledgment of Guests - President Bernecker recognized Chad Zagel, EGR City Commissioner.

Public Comments - None

Board Secretary's Report: Communications to and from the Board

The board received communication from John Siemion regarding his candidacy for the MASB Board of Directors – Region 3.

The board received an invitation from the Grand Rapids Symphony Friends to attend the February multimedia performances.

The board received communication from Christopher Gutek on Snow Days.

Student Council President's Report

Chris Bruinsma, Student Council Executive Board Vice President, reported that graduation preparations are underway. The Blood Drive is rescheduled for April 29. Prom will be held at Studio D2D on May 11.

PRESENTATION / DISCUSSION

High School Choir Student Recognitions

Craig Weigel, High School Principal; and Dr. James Borst, High School Choir Director, announced that high school students, Brenden Bagnall and Grant White were selected for the MHSVMA State Honors Choir and Regional Honors Choir respectively. These students were congratulated by the board and presented with certificates of recognition.

High School Mathematics Curriculum Presentation

Jenny Fee, Assistant Superintendent of Instruction; and Tim Farmer, high school mathematics teacher, presented on the high school mathematics curriculum. The background and a detailed overview was provided as described in Enclosure #6. A discussion was held among the board. There are no changes to the budget, and the proposal will be presented to the board for approval at the March 18 board meeting.

ACTION ITEMS - CONSENT AGENDA

Background: In order to save time during the meeting, we are using a Consent Agenda. Items in the Consent Agenda include those that

are routine or have been previously discussed by the Board of Education. Any board member may request to have any

item removed for a separate discussion and vote.

Recommendation: Motion to approve the items in the Consent Agenda Numbers 7-9.

Approval of Minutes of REGULAR Meeting of 01/30/2018 (Enclosure #7)

Approval of Minutes of SPECIAL Meeting of 01/30/2019 (Enclosure #8)

Approval of Payment of Bills – January 2019 (Enclosure #9)

Member Hessler moved to approve Consent Agenda items 7-9. Member Welch seconded the motion. Motion passed 7-0.

BOARD OF EDUCATION February 25, 2019 Page 2

OTHER ACTION ITEMS

MASB Board of Directors - Region 3 Election - (Enclosure #10)

Dr. Kattula and President Bernecker reported that the Michigan Association of School Boards (MASB) is requesting votes from school boards for candidates seeking election to the MASB Board of Directors. Three candidates are running for a seat in Region 3. The candidates are listed in Enclosure #10. A discussion was held among the board.

Member Bernecker moved to vote for Katherine Downes Lewis, MASB Region 3 candidate to the MASB Board of Directors. Member Laackman seconded the motion. Motion passed 7-0.

Approval of Numbers for the 2019-2020 Schools of Choice Programs - Dr. Kattula (Enclosure #11)

Background: East Grand Rapids Public Schools has participated in the Kent Intermediate School District Collaborative Schools of

Choice Program since its inception in the 1996-1997 school year. The Finance Committee and Superintendent are recommending that we accept 24 students through the 2019-2020 Kent ISD Collaborative Schools of Choice Program.

Recommendation: Motion to accept 24 students through the 2019-2020 Kent ISD Collaborative Schools of Choice Program.

Dr. Kattula and Kevin Philipps reviewed the Schools of Choice process and explained how recommended numbers are determined.

Member Milanowski moved to accept <u>24</u> students through the Kent ISD Collaborative Schools of Choice Program. A discussion was held among the board. Member Laackman seconded the motion. Motion passed 7-0.

ADMINISTRATIVE REPORTS

Superintendent

Dr. Kattula provided a historical overview of the Tuition Enrollment Program (TEP) and shared that the district is extending the TEP program to grades 6 and 7 beginning with the 2019-2020 school year.

Dr. Kattula reported that the district make-up instructional day will be held on Monday, April 8, 2019, due to the excessive number of snow days allowable by the state.

Dr. Kattula reported that President Bernecker and Vice President Welch have held meetings and will continue to meet with state legislators; Sen. Winnie Brinks, Rep. Rachel Hood, Rep. Lynn Afendoulis, and Rep. David LaGrand in an effort to build relationships and discuss education issues. Rep. Hood will meet further with Kevin Philipps after the state budget is released.

<u>Assistant Superintendent of Business</u> - No further reports.

Assistant Superintendent of Instruction - No further reports.

Board Member Reports

Communications Committee - Member Milanowski reported that a meeting will be held tomorrow.

Facilities Committee - No reports.

 $\label{lem:finance committee} \textit{-}\ No\ additional\ reports.}$

Joint Facilities Committee - Member Bernecker reported that a meeting will be held in March.

Personnel Committee - No reports.

Policy Review Committee - No reports.

Liaisons

Community Action Council – Member Yates reported that the committee is interested in having Tall Cop return to the district.

EGR Schools Foundation - Member Laackman reported that a meeting will be held tomorrow. Sip & Support will be held in March.

Legislative Liaison Committee - No reports.

Parks & Recreation – Member Hessler reported that a meeting is scheduled to take place in March.

PTO Council – Member Bernecker reported that a meeting was held today. Meetings are now held at Lakeside to enable the teacher liaison the ability to attend the meetings. At the meeting, Dr. Kattula discussed snow days and make-up options.

Parent Advocates for Special Education (PASE) – Member Reid met with the Director of Special Education and looks forward to his continued learning in the area of special education.

Leadership & Youth Development (LYD) – Member Milanowski reported that a meeting will be held tomorrow to review youth advisory board applications. Superintendent's Advisory Council (SAC) – Member Milanowski reported that the last meeting is scheduled to take place on March 13.

ADJOURNMENT

President Bernecker adjourned the meeting at 7:00 p.m.

Respectfully submitted,

Beth Milanowski, Secretary

East Grand Rapids Public Schools Board of Education

- * Minutes for this meeting will be available in the Superintendent's Office at 2915 Hall St. SE, East Grand Rapids, MI 49506. The phone number is 235-3535.
- ** If you plan to attend and have a special need and require accommodation to attend this meeting, please contact Dr. Heidi S. Kattula, Ed.D., Superintendent, at 235-3535. jmm 02/26/2019

BUSINESS OFFICE

MEMORANDUM

Date: March 18, 2019

To: Dr. Heidi S. Kattula, Ed.D., Superintendent

The Board of Education

From: Kevin D. Philipps, Assistant Superintendent of Business

Subject: February 2019 Payment of Bills

APPROVE **February General Fund (11)** – checks #127655 through check #127706, in the total amount of \$466,224.59.

APPROVE **February Athletic Fund (21)** – checks #16287 through check #21897, with the exception of voided checks #16291 and 16333, in the total amount of \$10,275.95.

APPROVE **February Sinking Fund (41)** – checks #559 through #560 in the total amount of 14,282.28.

APPROVE **February Capital Projects (43)** – no checks this month.

APPROVE **February Bond Fund (46)** – check #104 in the total amount of \$25,000.

APPROVE **February Student Activity Fund (61)** – checks #26473 through #26493, in the total amount of \$18,597.96.

APPROVE **February Joint Facilities Fund** – no checks this month.

APPROVE **February Debt Retirement** – no checks this month.

OVERVIEW

BOARD ENCLOSURE March 18, 2019 Item No. 8

Rationale Goals / Skills Timeline Existing & New Courses Course Content / Topics Pathways

RATIONALE

- All DP curriculums on a 7 year review cycle
- Incorporation of latest educational research
- Flexibility to address students' needs

GOALS

- Develop mathematical fluency
- Develop mathematical thinking
- Recognize mathematics in surroundings
- Utilize mathematics in abstract or contextual settings

DEVELOPMENT OF SPECIFIC SKILLS

- Analysis
- Abstraction & Generalization
- Risk Awareness
- Statistical Literacy
- Algorithmic Thinking
- Inquiry & Modeling

OUR TIMELINE

- IB Summary Report to Teachers April 2017
- IB Final Report to Schools May 2018
- Course Guides February 2019
- SSS Subject Specific Seminar March 2019

OUR TIMELINE

- Resource Selection & Acquisition Spring 2019
- © Lesson Plan Development Spring & Summer 2019
- © Course Implementation August 2019

EXISTING COURSES

IB Math Studies

IB Mathematics SL

IB Mathematics HL

Turther Mathematics

NEW COURSES

IB Mathematics:

Applications & Interpretation (SL & HL)

Analysis & Approaches (SL & HL)

IB Mathematics Applications & Interpretation

- Using mathematics to describe our world
- Solving practical problems
- Emphasizing use of technology
- Future studies in social sciences, natural sciences, & business

DEVELOPMENT OF SPECIFIC SKILLS

- Analysis
- Abstraction & Generalization
- Risk Awareness
- Statistical Literacy
- Algorithmic Thinking
- Inquiry & Modeling

EMPHASIS IN APPLICATIONS COURSE

- Analysis
- Abstraction & Generalization
- Risk Awareness
- Statistical Literacy
- Algorithmic Thinking
- Inquiry & Modeling

IB Mathematics Analysis & Approaches

- Fluency in the construction of mathematical arguments
- Skills in mathematical thinking
- Real and abstract application
- Future studies in engineering, physical sciences, & economics

DEVELOPMENT OF SPECIFIC SKILLS

- Analysis
- Abstraction & Generalization
- Risk Awareness
- Statistical Literacy
- Algorithmic Thinking
- Inquiry & Modeling

EMPHASIS IN ANALYSIS COURSE

- Analysis
- Abstraction & Generalization
- Risk Awareness
- Statistical Literacy
- Algorithmic Thinking
- Inquiry & Modeling

COMMON TOPICS

- Algebra
- Tunctions
- Geometry & Trigonometry
- Statistics & Probability
- Calculus

Applications & Interpretation Emphasis

- Algebra
- Tunctions
- Geometry & Trigonometry
- Statistics & Probability
- Calculus

Analysis & Approaches Emphasis

- Algebra
- Tunctions
- Geometry & Trigonometry
- Statistics & Probability
- Calculus

TERMINOLOGY

Internal Assessment (IA) – research paper Papers 1, 2 (I 3 for HL) - assessments

"TOOLKIT" & EXPLORATION

Carrying out investigations

Modelling I inquiry activities

Completing the Internal Assessment

Details to be revealed at the SSS in March

MAPPING & PATHWAYS

IB Math Studies Applications SL
IB Mathematics SL Analysis SL
IB Mathematics HL Analysis HL

IB MATH STUDIES SL PATHWAY

9th	10th	11th	12th
Geometry	Adv. Alg.	IB Math Studies SLA	IB Math Studies B

$$A - Year 1$$

$$B-Year 2$$

IB APPLICATIONS SL PATHWAY

9th	10th	11th	12th
Geometry	Adv. Alg.	IB Applications SL A	IB Applications SL B

$$A$$
 – Year 1

$$B-Year 2$$

IB MATHEMATICS SL PATHWAYS

9th	10th	11th	12th
Geometry	AA/FST (H)	IB Mathematics SL A	IB Mathematics SL B
Adv. Algebra	FST	IB Mathematics SL A	IB Mathematics SL B
AA/FST (H)	FST (H)/AP Stats	IB Mathematics SL A	IB Mathematics SL B

A – Year 1

B-Year 2

IB ANALYSIS SL PATHWAYS

9th	10th	11th	12th
Geometry	AA/FST (H)	IB Analysis SL A	IB Analysis SL B
Adv. Algebra	FST	IB Analysis SL A	IB Analysis SL B
AA/FST (H)	FST (H)/AP Stats	IB Analysis SL A	IB Analysis SL B

$$A$$
 – Year 1

$$B-Year 2$$

IB MATHEMATICS HL PATHWAYS

9th	10th	11th	12th
AA/FST (H)	FST (H)/AP Stats	IB Mathematics HL A	IB Mathematics HL B
FST (H)/AP Stats	Pre-Calc/Calc (H)	IB Mathematics HL A	IB Mathematics HL B

A – Year 1

B-Year 2

IB ANALYSIS HL PATHWAY

9th	10th	11th	12th
AA/FST (H)	FST (H)/AP Stats	IB Analysis HL A	IB Analysis HL B
FST (H)/AP Stats	Pre-Calc/Calc (H)	IB Analysis HL A	IB Analysis HL B

$$A$$
 – Year 1

$$B-Year 2$$

SUMMARY

Rationale Goals / Skills Timeline Existing & New Courses Course Content / Topics Pathways

2018-2019 ADMINISTRATOR CONTRACT

for Board of Education Approval – March 18, 2019

Joanne Platt Special Education Administrator

